

table of contents

October 1996,
Volume 47, Issue 5

Articles

A Platform for Building Integrated
Telecommunication Network Management
Applications
by Prabha G. Chadayammuri

Distributed Processing Environment: A
Platform for Distributed Telecommunications
Applications
by Frank Leong, Satya P. Mylavarabhata, Trong
Nguyen, and Frank Quemada

Alarm Management in Telecommunications
Networks
by Sujai Hajela

HP OpenView Event Correlation Services
by Kenneth R. Sheers

A Modeling Toolset for the Analysis and Design
of OSI Network Management Objects
by Jacqueline A. Bray

A Toolkit for Developing TMN Manager/Agent
Applications
by Lisa A. Speaker

A Software Toolkit for Developing
Telecommunications Application Components
by Alasdair D. Cox

Business Process Flow Management and its
Application in the Telecommunications
Management Network
by Ming-Chien Shan, James W. Davis, Weimin Du,
and Qiming Chen

javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/prodserv.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/prodserv.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/support.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/support.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/solutions.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/solutions.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/howtobuy.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/howtobuy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://www.hp.com/go/search-us-eng/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hp.com/go/search-us-eng/'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/contact.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/contact.htm'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/covoct96.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/ahead-1096.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/past.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/journal.html
javascript:if(confirm('http://www.hpl.hp.com/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/'
javascript:if(confirm('http://www.hpl.hp.com/about/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/'
javascript:if(confirm('http://www.hpl.hp.com/research/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/research/'
javascript:if(confirm('http://www.hpl.hp.com/news/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/news/'
javascript:if(confirm('http://www.hpl.hp.com/jobs/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/jobs/'
javascript:if(confirm('http://www.hpl.hp.com/techreports/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/techreports/'
javascript:if(confirm('http://www.hpl.hp.com/about/sites.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/sites.html'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a8.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a9.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a10.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a11.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a12.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a8.htm

HP OpenView Agent Tester Toolkit
by Paul A. Stoecker

Storage Management Solutions for Distributed
Computing Environments
by Reiner Lomb, Kelly A. Emo, and Roy M. Vandoorn

An Introduction to Fibre Channel
by Meryem Primmer

Tachyon: A Gigabit Fibre Channel Protocol Chip
by Judith A. Smith and Meryem Primmer

file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a9.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a10.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a11.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96oct/oct96a12.htm
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/privacy.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/privacy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/termsofuse.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/termsofuse.htm'

Article 1 October 1996 Hewlett-Packard Journal 1

A Platform for Building Integrated

Telecommunications Network

Management Applications

Telecommunications companies today are faced with rapid
technological change, large heterogeneous environments, and a
greater need to provide customers with products that ensure
reliable, cost-effective network service. This means that these
companies need a platform that has a visionary strategy that
enables them to develop standards-compliant network
management solutions for a continually changing environment.

by Prabha G. Chadayammuri

The telecommunications industry is going through phenomenal growth and change. This growth has made telecommunications
networks essential to the daily activities of the enterprise and individuals. It has also given rise to the need for better ways to
manage and maintain heterogeneous and multivendor networks.

Network management includes the operations, administration, maintenance, and provisioning (OAM&P) functions required
to monitor, interpret, and control a network and the services it provides. When networks started to be used beyond the
academic community and before deregulation and privatization of the telephone industry, there were fewer vendors, thus
fewer multivendor management issues. Also, the rate of introduction of new network technologies was much slower. These
conditions meant that network management could be ad hoc and vendor-specific. Today, issues such as multivendor networks
and equipment, the need to automate certain network management tasks, and the rapid integration of new technologies have
driven the need to standardize telecommunications network management.

Since the early 1980s, the standardization bodies have been developing and specifying a collection of standards for managing
telecommunications networks. A portion of these standards, dealing with open systems, is contained in the X.7xx series of
standards defined by the ITU-T (International Telecommunications Union—Telecommunications). Another series of
standards, the M.3xxx series from ITU-T, defines a model known as the Telecommunications Management Network (TMN).1

TMN is based on the Open Systems Interconnection (OSI) systems management model, which is set of standards that define
the rules for processing and transferring data over networks.2 Such systems are called open systems. Although not
intrinsically part of TMN, OSI systems management standards were developed jointly by the ISO and ITU standards bodies.

All of these standards, no matter how worthy, are simply collections of well-written guidelines without a platform and tools
to build network management solutions. Choosing a network management platform is a critical strategic decision that has
long-term implications. The development of large-scale telecommunications management systems requires a significant
investment of resources. Solutions, once deployed, will be supported for many years.

For equipment manufacturers and systems integrators, the network management foundation must enable rapid development
of applications that can differentiate and add value to their products. For telecommunications service providers, the network
management foundation must enable rapid deployment of new services that improve competitiveness and new operations
that increase efficiency.

HP OpenView products provide the platform and enabling technologies required for network management solutions for
today’s telecommunications environment.

HP OpenView DM
The HP OpenView Distributed Management (DM) platform is a software platform for designing portable, standards-based
systems for telecommunications management (see Fig. 1). HP OpenView DM products are focused on meeting the reliability,
performance, distribution, and standards needs of telecommunications equipment manufacturers, service providers, and
system integrators. The HP OpenView DM platform offers the following features for developing TMN applications.

Standards Support. The HP OpenView DM products support protocol, object, and service specifications defined by ITU, OSI,
X/Open , the Internet Engineering Task Force (IETF) for SNMP (Simple Network Management Protocol), and the Network
Management Forum (NMF).3

Article 1 October 1996 Hewlett-Packard Journal 2

Manager Agent Operational Support
Systems Applications

HP OpenView Windows

SNMPRFC 1006CMIP

GDMO
Specifications

Managed
Object
Toolkit

GDMO
Development

Toolkit

ACSE
Connections

Routing

Event
Services

APIs

Postmaster

CMIP
GDMO
SNMP

Common Management Interface Protocol
Guidlines for the Definition of Managed Objects
Simple Network Management Protocol

Fig. 1. The main components of the HP OpenView Distributed Management Platform.

There is also full support for network management protocols CMIP (Common Management Information Protocol), RFC 1006
(TCP/IP), and SNMP.4,5

Open Systems. The HP OpenView DM platform is built on an open systems architecture, enabling solutions to run on a variety
of hardware platforms. Native support is implemented for HP 9000 workstations and servers running the HP-UX* operating
system and Sun SPARC workstations running the Solaris and SunOS operating systems. Support for HP OpenView is also
provided on other hardware and software platforms.

Postmaster. The postmaster serves as the integration point for management protocol stacks such as CMIP and SNMP,
management APIs, and related facilities (e.g., routing, events, and association control). The postmaster provides distributed
message routing and access to applications and services through standard management protocols. Finally, the postmaster
reliably creates and manages associations (connections), maps objects to network addresses and protocol stacks, and routes
requests from manager systems and responses from managed systems (agents).

Event Services. HP OpenView DM provides a set of services that management applications can use to control event and alarm
messages from diverse network elements and systems. It includes a mediation service that collects, stores, filters, and
extracts messages and an alarm management service that displays and correlates alarm messages and invokes external
applications based on alarm data. Alarm management and event correlation services are described in Articles 3 and 4,
respectively.

HP Distributed Processing Environment (DPE). The HP DPE provides an Information Networking Architecture (INA) compliant
platform for telecommunications services and operations systems. Trader services and an API framework simplify the
development and deployment of distributed telecommunications applications. HP DPE is described in Article 2.

Graphical User Interface. The HP OpenView windows graphical user interface (GUI) provides network operators and
administrators with a consistent view of the managed environment and seamless integration of management functions,
regardless of vendor or managed object type. HP OpenView windows provides a common interface that simplifies the
development and use of management applications. Finally, the HP OpenView windows GUI is the key integration point for
HP OpenView applications.

Modeling Toolset. The HP OpenView GDMO (Guidelines for the Definition of Managed Objects)6 Modeling Toolset is an
integrated suite of software tools for designing and analyzing objects used in network management applications. GDMO
is an ISO standard that describes a consistent methodology for specifying managed objects in TMN applications.

The HP OpenView GDMO Modeling Toolset has a forms-based GUI that enables developers to create GDMO specifications
and export them as ASCII files for use by the next application in the tool chain, the Managed Object Toolkit. The HP
OpenView GDMO Modeling Toolset is described in Article 5.

http://www.hp.com/hpj/oct96/oc96a3.htm
http://www.hp.com/hpj/oct96/oc96a4.htm
http://www.hp.com/hpj/oct96/oc96a2.htm
http://www.hp.com/hpj/oct96/oc96a5.htm

Article 1 October 1996 Hewlett-Packard Journal 3

Managed Object Toolkit. The HP OpenView Managed Object Toolkit is a C++ code generator that accelerates the development
of GDMO-based manager and agent applications (described below). The managed object toolkit includes an infrastructure
that provides a collection of reusable objects that handle CMIS operations such as GET, SET, and ACTION.

Agent application development is improved because the Managed Object Toolkit takes the GDMO ASCII file and
automatically converts the GDMO specification into an OSI-conformant, executable agent. The Managed Object Toolkit
is described in Article 6.

TMN Applications and HP OpenView
HP OpenView products have been adopted by many prominent equipment manufacturers and telecommunications service
providers to implement a variety of TMN solutions. Some of the areas in which TMN applications can be built upon the HP
OpenView foundation include:

� Services management for broadband networks including Synchronous Optical Network (SONET),
Synchronous Digital Hierarchy (SDH), Asynchronous Transfer Mode (ATM), and residential services such as
video-on-demand

� Provisioning and monitoring applications for broadband networks

� Network monitoring for outsourced customer networks managed by telecommunications service providers

� Customer gateways into public networks for real-time monitoring and data management

� Integration with other management platforms for TMN compatibility and a single view from a multivendor
environment

� Element management systems for new equipment and new data communications services.

The HP OpenView DM platform has traditionally supported the OSI systems management model to provide TMN solutions.
However, in recent years the Common Object Request Broker Architecture (CORBA)7 from the Object Management Group
(OMG) has attracted interest as a general model for distributed application development.

The combination of the CORBA and OSI models is an extremely powerful solution for TMN application development. Thus,
HP OpenView DM platform development is moving in that direction.

The rest of this article will discuss various aspects of the TMN architecture and the OSI model and their relationship to the
existing OSI-based HP OpenView DM platform and the evolving CORBA-based platform.

TMN Architecture
Fig. 2 shows the business, service, network, and element management layers of the TMN model and the interaction between
applications in these different management layers. The functionality of applications in each of these layers is defined in
ITU-T Recommendation M.3010.1

Network Element Layer. Functionality at this layer is provided by the network elements (e.g., switches, multiplexers,
repeaters, hubs, terminals, etc.). These functions include operations such as performance data collection, alarm collection,
protocol conversion, and so on. Applications at this level are responsible for managing network elements.

Element Management Layer. Functions at this layer are responsible for managing a subset of network elements, performing as
a gateway to network elements in the upper layers, and keeping statistical and historical information about network
elements.

Network Management Layer. Network management functions are used to support TMN applications that require a global view
of the network. Data for this global view is collected from data summarized by the network element management layer. This
layer is also responsible for the technical provision of services requested by the service management layer.

Service Management Layer. This layer is responsible for managing the services provided to customers. It provides the point of
contact with customers for all service transactions, including billing, quality-of-service (QoS) data, service contracts, and so
on.

Business Management Layer. This layer contains functions that are responsible for the whole enterprise. These functions
include goal setting and budgeting, product planning and definitions, and agreements between jurisdictions.

Operation Systems and the Manager/Agent Model. The operations systems shown in Fig. 2 are integrated telecommunication
management applications that implement the network management functions in the TMN layers. The operations systems are
based on an agent/manager model. This model resembles the client/server paradigm in which applications in the manager
role are clients and applications acting as agents would be servers. The agent/ manager model is also called a managed
system (agent) and managing system (manager) architecture in TMN terminology. The agent/manager model is based on
using objects to model the system being managed. Each object can have attributes that represent its state or relationship
with other objects, its specialized behaviors (called actions), and notifications it issues to signal some event. Thus, an object
encompasses a device’s behavior as well as its physical characteristics. An agent resides in an object and reports the object’s
status to the manager. The manager, equipped with the capability to have a global view of the network, manages the agents
and handles the notifications from agents.

http://www.hp.com/hpj/oct96/oc96a6.htm

Article 1 October 1996 Hewlett-Packard Journal 4

Business
Management

Layer

Service
Management

Layer

Element
Management

Layer

Network
Management

Layer

Network
Elements

Layer

Manager

Operations
Systems

Agent

Q3

HP OpenView
DM

Q3
Agent

Manager

Operations
Systems

Agent

HP OpenView
DM

Manager

Operations
Systems

Agent

HP OpenView
DM

Manager

Operations
Systems

Agent

HP OpenView
DM

Q3
Agent

Q3
Agent

Q-Adapter

Non-TMN
Applications

Q3

To or from
other TMNs

To or from
other TMNs

X

X

Fig. 2. TMN architecture showing the network management layers and various TMN elements in each layer.

Q3 Interfaces. Operations systems within and between TMN layers are required to use a set of standard interfaces called
Q3 interfaces for the exchange of management information.8,9 Q3 interfaces are responsible for connecting an operations
system to a network element, an operations system to a Q adapter, an operations system to a mediation device, or two
operations systems in the same TMN. Q3 specifications use the Common Management Information Service Element (CMISE)
protocol10 for management and the file transfer access and management (ftam) protocol for bulk transfer.

The standard way to convert a non-TMN function into a TMN function is called a Q adapter. Loosely stated, Q adaption is a
translation between Q3 and the non-Q3 models at run time. Translation to a level less than Q3 requires a mediation device to
raise the adaption to Q3 levels. The X reference points in Fig. 2 also perform an interface function. They provide an interface
for communications with operations systems belonging to other TMNs or between TMN operations systems and non-TMN

Article 1 October 1996 Hewlett-Packard Journal 5

operations systems on other TMNs that support TMN-like interfaces. Q3 interfaces are generally regarded as appropriate for
the X reference point.

The HP OpenView DM platform supports the APIs and protocols necessary for TMN applications. The HP OpenView DM
platform provides the Q3 interfaces via the X/Open management XOM/XMP APIs and the C++ classes generated by the
Managed Object Toolkit described in Article 6. Faster APIs like the BER (Basic Encoding Rules) Management Protocol
(BMP) and the generic data type dictionary APIs are available on the platform.11 Application developers can build OSI
applications using the APIs or the Managed Object Toolkit. The Managed Object Toolkit generates a complete application
skeleton that can be customized by adding user-defined behaviors.

The OSI Model
As mentioned earlier, TMN is based on the OSI model and the HP OpenView DM platform supports the OSI model. In OSI
system management, managed object classes are defined using GDMO (Guidelines for the Definition of Managed Objects).
A managed object class has its state and relationships with other objects represented in its attributes, which can be accessed
by GET and SET methods. The managed object class definition can have complex interfaces called actions and can specify
notifications, which are emitted signal events associated with the object.

Abstract Syntax Notation One (ASN.1),12 a data definition language, is used to describe the syntax of management data
exchanged between objects. Behavior templates are used to define the semantics of operations on attributes and objects and
are commonly expressed in natural languages. As a result, there is no standard way of parsing the behavior templates. The
agent developer is allowed to implement the behaviors appropriately.

A managed object can be created or deleted by external commands if allowed by the object’s GDMO specification. GDMO
allows multiple inheritance, in which a given object can inherit all the operations, notifications, and behaviors of other
objects. References 13, 14, and 15 provide many of the widely used objects, attributes, and notifications used in network
management.

When defining new objects, these standard definitions are expected to be reused whenever possible. This is one of the
challenging aspects of OSI object modeling. The GDMO Modeling Toolset, available on the HP OpenView DM platform,
makes this task much easier. Article 5 describes the GDMO Modeling Toolset.

Management Interactions
Fig. 3 shows the seven-layer OSI reference model.2 Each layer has a clearly defined role in the transfer of information over
a network. For systems management, the application layer is of the greatest interest. Applications interoperate with each
other using application service elements (ASEs), which are defined by the application layer. The Common Management
Information Service Element (CMISE), the Remote Operations Service Element (ROSE), and the Association Control Service
Element (ACSE) are the most important ASEs used for systems management. The protocols used to implement these service
elements are also defined as part of the ISO standard specifications.

OSI systems management operates like the agent/manager model described above. An application issuing management
operations and receiving notifications is said to be acting in the manager role, and an application performing management
operations and emitting notifications on behalf of managed objects is said to be acting in the agent role. An open system is
made up of managed objects and the various processes involved in processing and transferring information.

A manager is expected to establish an association with an agent using the ACSE before attempting any management
interaction. If the association goes down, both parties can detect it. When the association is set up, the manager and the
agent exchange management information about their respective capabilities, including authentication schemes, encoding
schemes, maximum data sizes, multiple object selection capabilities, and so on. These capabilities are called functional
units. The HP OpenView DM platform supports both direct user control over association management and the automatic
connection management mode in which the user does not have to be directly involved in the association management.

Once the association is set up between a manager and an agent, management information can be exchanged. The manager
is allowed to perform CREATE, DELETE, and ACTION operations on the managed objects and GET and SET operations on their
attributes as defined in their GDMO specification. The agent performs the operations on the managed objects on behalf of
the manager and sends replies back to the manager.

The managed objects emit notifications (events) specified in their GDMO specifications. Notifications usually signify
something of interest happening at the object, like its creation, deletion, or attribute value change. The agents deliver the
notifications either directly to the manager or indirectly through event forwarding discriminators, which are managed
objects that filter events coming from agents. This filtering ensures that only events of interest are received by the manager.
The OSI-based HP OpenView DM platform supports the most generic form of event discrimination available today.

Another important aspect of OSI system management is that it is based on an asynchronous message passing model, as are
most other network management protocols in use today. All operations can be classified into four primitives (or types):
requests, replies, confirms, and indicates. These primitives are used in the following way:

1. To perform an operation, a manager sends a request message.

http://www.hp.com/hpj/oct96/oc96a6.htm
http://www.hp.com/hpj/oct96/oc96a5.htm

Article 1 October 1996 Hewlett-Packard Journal 6

Presentation

Application

SMASE
CMISE

Session

Transport

Network

Datalink

Physical

Presentation

Application

SMASE
CMISE

Session

Transport

Network

Datalink

Physical

Application 1 Application 2

User Data

Application Header

Presentation Header

Session Header

Transport Header

Network Header

Datalink Header

Physical Header

Protocol data added to user data at each layer in going from Application 1 to
Application 2 and subtracted when going in the other direction.

CMISE
SMASE

Common Management Information Service Element
System Management Application Service Element

Network

Fig. 3. OSI stacks showing the significance of the OSI system management standards.

2. When the message shows up at the agent, it is received as an indicate message.

3. Later, the agent may send a reply message.

4. The reply message is received at the manager as a confirm message.

The agent sends a reply message if the original request required a confirmation. The CMISE GET, CANCEL-GET, CREATE, and DELETE
operations are always confirmed, whereas the SET, EVENT-REPORT, and ACTION operations can either be confirmed or
unconfirmed. Request and reply messages are always directed outward from the application and indicate and confirm messages
are always directed inward.

The Open Protocol Interface Architecture
Fig. 4 shows the HP OpenView DM postmaster with the attached API stacks, protocol stacks,4,5 and intermediate
stacks.16,17,18 The postmaster is at the heart of the OSI-based HP OpenView DM platform. Applications bind to the
postmaster processes running on different nodes. Postmasters on the different nodes coordinate interactions between
applications bound to them.

The HP OpenView DM postmaster is built on an architecture known as the Open Protocol Interface, which is based on the
OSI messaging model described above.

Messages flow into the postmaster either through the API stacks or through the protocol stacks. The processed messages
that are sent out and need confirmations are kept on a sent queue awaiting confirmations. When the confirm messages come
in they are matched with the corresponding request messages. This store-and-forward mechanism allows greater reliability
in the message delivery. Flow control mechanisms are implemented to address congestion problems.

The X/Open management APIs (XOM/XMP) and the BER Management Protocol (BMP) are the API stacks. These and the
CMIP, SNMP (RFC 1157), and RFC 1006 protocols are all supported by the OSI-based HP OpenView DM platform. This
support, along with the requirements of association control and routing, provide the full complement of OSI conformance.

User-defined API stacks and protocol stacks can be added easily to the HP OpenView DM platform using the Open Protocol
Interface architecture. New API and protocol stacks continue to be added by HP OpenView DM users. This flexibility allows
easy integration of existing legacy applications into the management framework.

Article 1 October 1996 Hewlett-Packard Journal 7

CMIP RFC 1006 SNMP

ACSE (Association
Control Service Element)

XMP API
Stack

OPI Socket
Stack

Other API
Stacks

Application
Process

API
Stacks

Protocol
Stacks

Intermediate
Stacks

Event Correlation
Services

Routing

Event Forwarding
Discriminators

Application
Process

Application
Process

Open Protocol Interface (OPI) Core

Postmaster

UDP/IP
Stack

TCP/IP
Stack

OSI
Stack

Fig. 4. The HP OpenView DM postmaster showing the open protocol interface

core and the attached API, protocol, and intermediate stacks.

The intermediate stacks on the OSI-based HP OpenView DM platform are used to set up associations, determine routes,
perform event forwarding discrimination, and so on. Each message is passed through its configured set of intermediate
stacks for processing.

The intermediate stacks can also be used for data concentration or other similar purposes. This makes the Open Protocol
Interface architecture ideal for building TMN mediation devices. For instance, the Event Correlation Service stack on the
postmaster performs event correlation for events that pass through the stack.

Adding intermediate stacks is relatively trivial. This allows extreme flexibility in customizing the platform for specific needs.
Consider, for instance, how user-defined security might be added to the platform. The Open Protocol Interface architecture
presently allows security information (authentication token and authorization data) to be specified in each message. Today
such information is regarded as opaque and is not interpreted by the stacks. If a user-defined intermediate security stack
were added to the platform, the security information in the messages could be intercepted. The user stack could interpret
the information and accept or reject the message, implementing user-specific behaviors.

The Open Protocol Interface development kit is separately available as an HP product.

Naming and Containment
To perform the operations and actions described above, there has to be a way of addressing the object instances. In OSI
system management, each object instance has to have a unique name, known as the object’s distinguished name. The
uniqueness of the name is guaranteed by naming all objects with respect to a containing object or its parent instance. The
only (virtual) object not contained in another is called the root. The relationship between the parent (superior) object and
the child (subordinate) object is called containment.

Since every object instance (except root) is contained in its parent instance, an acyclic, hierarchical tree of object instances
can be constructed. This is known as a containment tree. The idea of collecting objects based on containment is particularly
useful in defining operations that apply to multiple objects. Such operations are called scoped operations in OSI systems
management terminology. The CMISE GET, SET, DELETE, and ACTION operations can be scoped and result in the operations being
applied to all objects that fall within the specified scope. Multiple object selection and actions make the OSI system
management model far more powerful (and complex) than simpler models like SNMP.

Article 1 October 1996 Hewlett-Packard Journal 8

The object instance name is required in all CMISE transactions. When automatic connection management is used, the HP
OpenView DM postmaster uses a service called the object registration service to identify the target application for each
request from its instance name. The object registration service allows users to configure the object location externally,
enabling one to build highly scalable systems that provide complete location transparency.

Naming and containment are described in more detail in Article 6.

CORBA-Based Application Development
So far, we have gone over the standards support and other features of the OSI-based HP OpenView DM Platform. Since most
telecommunication resources today are modeled using a GDMO specified object, these applications tend to be in the
element management layer of the Telecommunications Management Network.

As we move up the TMN hierarchy (Fig. 1), the need for greater distribution, reliability, database access, and user interface
access become obvious. TMN standards do not constrain the internal structure of applications. As a result, several
nonstandard models are in use that need to be integrated into a single model to reduce costs.

The new HP OpenView telecom management platform addresses these specific issues with the use of the Common Object
Request Broker Architecture (CORBA) from the Object Management Group (OMG). CORBA provides a highly scalable
distributed object model. The OMG has a large industry participation and addresses all aspects of object modeling.

The new HP OpenView telecommunication management platform uses the HP ORBPlus distribution backplane for
application interactions. HP ORBPlus supports the standard IIOP and DCE CIOP transports as well as a highly optimized
local procedure call mechanism.

The OMG Common Object Service Specifications (COSS)19 define a basic event service. Even though this service is
implemented on the HP OpenView platform, it is not sufficiently robust for telecommunications management applications.
HP OpenView, therefore, has developed a CORBA-based notification service,20 which allows users to register with
a notification manager for events filterable on multiple attributes.

The CORBA-based HP OpenView telecom platform also comes with the OMG naming and life cycle services, the OMG
standard transaction service, and a location service, called the trader service. The collection of CORBA components and
services, known as the HP OpenView distributed object infrastructure, is shown in Fig. 5.

OMG COSS 1
Life Cycle Service

Notification Service
(Derived from OMG

COSS 1 Event Service)

Locking Service
(Concurrency Service)

OMG COSS 2
(Transaction Service)

IDL-to-C++
Compiler

Trader
Service

User
Configuration

Service

HP
Simple Object

Adapter

Multiple Transports:
IIOP, DCE CIOP, Local

Procedure Call

Multiple Transports:
IIOP, DCE CIOP, Local

Procedure Call

CORBA 2.0

OMG C++ Language Binding

Distributed Object
Infrastructure

(DOI)

OMG
CORBA
COSS
IDL

Object Management Group
Common Object Request Broker Architecture
Common Operational Support Services
Interface Definition Language

Fig. 5. The HP OpenView distributed object infrastructure showing the various standard services supported.

The notification service for the distributed object infrastructure provides the same value in the CORBA-based platform as
the OSI event-forwarding discriminator does in the OSI-based platform. The event-forwarding discriminators implemented
on the HP OpenView DM platform are more suitable for Q3 notifications.

The CORBA-based OpenView platform also provides a more scalable version of the relationship service known as the
topology service and a database strategy based on the industry standard ODBC (Open Database Connectivity) interfaces.
The topology service enables the developer to define relationships between topological entities, which are the abstract
objects corresponding to the elements in a network. The ODBC interface is a transparency layer that the X/Open Consortium
developed to allow access to relational databases. This API allows a great degree of independence from specific databases,
with a trivial performance loss.

http://www.hp.com/hpj/oct96/oc96a6.htm

Article 1 October 1996 Hewlett-Packard Journal 9

With the availability of a CORBA-based platform, application development is made considerably easier. Object modeling is
done in IDL, the OMG’s Interface Definition Language. IDL has the same capabilities as GDMO and ASN.1 combined.21 Also,
the CORBA-based platform allows operations on remote objects to be just as easy as operations on local objects, although
local object access would be faster.

In the model shown in Fig. 6, CORBA-based applications access Q3 and other objects using adapters, or HP OpenView DM
APIs. Q3 adapters can be generic adapters that provide a CMIP interface in IDL,22 adapters that follow the mappings from
the X/Open Joint Interdomain Management (JIDM) task force,23 or class-specific adapters that expose modified JIDM
interfaces.24

Self
Management Presentation Framework Security

HP
OpenView

Modeling
Tools

Semantic
Processes

Data
Framework

Distributed Object Infrastructure
(ORB CORBA Services)

Self
Management Presentation Framework Security

HP
OpenView

Modeling
Tools

Semantic
Processes

Data
Framework

Distributed Object Infrastructure
(ORB CORBA Services)

Self
Management Presentation Framework Security

HP
OpenView

Modeling
Tools

Semantic
Processes

Data
Framework

Distributed Object Infrastructure
(ORB CORBA Services)

Business
Management

Layer

Service
Management

Layer

Network
Management

Layer

Open Protocol Interface

Legacy
Adapter

Open Protocol Interface

Q3
Adapter

To Legacy Services

Open Protocol Interface

Legacy
Adapter

To Legacy Services

Open Protocol Interface

Q3
Adapter

Open Protocol Interface

Q3
Adapter

To Legacy Services

Open Protocol Interface

Legacy
Adapter

Q3
Application

Q3
Application

Q3

To or from
other TMNs

X Reference
Point

Fig. 6. TMN applications built with CORBA accessing Q3 and other object models.

The JIDM adapters can be static or dynamic. The static adapters are built for specific GDMO Management Information Bases
(MIBs) and are expected to offer better performance. The dynamic adapters use the generic facilities of the CORBA
architecture (DII and DSI), which are more flexible than the static interfaces. The JIDM activity produces mappings for
CORBA-Q3 interaction and CORBA-SNMP interaction. The CORBA-based HP OpenView platform will supply adapters after

Article 1 October 1996 Hewlett-Packard Journal 10

the standards in this area have stabilized. The Open Protocol Interface architecture discussed before is ideally suited for
building Q3 and SNMP adapters to CORBA.

With the use of adapters, all other object models appear to be CORBA objects to the application developer. Applications use
CORBA to gain distribution, standard language mappings, and common object services for portability and the topology
services for data integration. The ODBC layer supports transparent access to multiple databases. In addition, a suite of
enterprise management tools are available from other HP organizations that greatly enhance CORBA-based application
development.

Summary
The new HP OpenView telecom platform combines the power of the CORBA model with the support for OSI management
standards. As SNMP-based management gains acceptance in the telecom industry, the HP OpenView SNMP-based
management platform will be integrated into the above model.

For pure Q3 access, developers today are encouraged to use the OSI-based HP OpenView DM platform. Q adapters,
mediation devices, Q3 manager applications, and Q3 agents usually found in the TMN element management and network
element layers fall into this group.

For highly scalable distributed applications requiring transaction processing, user interfaces, database access, and greater
control over the quality of service usually found in the TMN network and service layers, developers should use the CORBA-
based HP OpenView telecom platform.

See the Glossary for definitions of telecommunications terminology.

References
1. Principles for a Telecommunications Management Network, ITU-T Recommendation M.3010 (see also

Recommendations M.3200 and M.3400), 1992.
2. Open Systems Interconnection (Basic Reference Model), ITU-T Recommendation X.200, 1994.
3. Network Management Forum, Forum 04, 1990.
4. Simple Network Management Protocol—RFC 1157, May 1990.
5. Common Management Information Protocol Specification, ITU-T Recommendation X.711, 1991.
6. Guidelines for the Definition of Managed Objects, ITU-T Recommendation X.722, 1992.
7. The Common Object Request Broker—Architecture and Specification, OMG Document 95-03-04, July 1995.
8. Lower-Layer Protocol Profiles for the Q3 Interface, ITU Recommendation Q.811, March 1993.
9. Upper-layer Protocol Profiles for the Q3 Interface, ITU Recommendation Q.812, March 1994.
10. Common Management Information Service Definition, ITU-T Recommendation X.710, 1991.
11. BER Management Protocol, HP OpenView 4.1 Users Manual, 1996.
12. Specification of Abstract Syntax Notation One, ITU-T Recommendation X.208, 1993.
13. Definition of Management Information , ITU-T Recommendation X.721, 1992.
14. Generic Management Information, ITU-T Recommendation X.723, 1993.
15. Generic Information Model, ITU-T Recommendation M.3100, 1992.
16. Service Definition for Association Control Service Element, ITU-T Recommendation X.217, 1992.
17. Event Report Management Function, ITU-T Recommendation X.734, 1993.
18. K.A. Harrison, A Novel Approach to Event Correlation, HP Laboratories, Bristol, England.
19. Common Object Services Specification, OMG Document 94-01-02, 1994.
20. Event Notification Service, COSS-1, OMG Document 94-01-02, 1994.
21. Comparison of Object Models, OMG Document 94-03-07, 1994.
22. E. Shen, M. Shan, and M. Robinson, CMIP Interface—TC’95 Model, HP Laboratories Research Report, 1995.
23. Joint Interdomain Management Specification Translation, X/Open Company, 1996.
24. Class-adapter—Blanca Architecture Paper, preliminary version, 1996.

HP-UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a2.htm
http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/oct96/oc96a1a.pdf

Glossary October 1996 Hewlett-Packard Journal 1

Glossary

This glossary contains definitions of some of the telecommunication terminology and acronyms used in many of the telecommunications
articles in this issue.

ACSE (Association Control Service Element). In the OSI model this is an application-layer protocol that is used to establish and
terminate an association between applications on the same system or on different systems.

Agent/Manager Model. This model defines the basic architecture for network management of distributed systems. (This model is also
called the managed system/managing system model.) The agent/manager system manages devices called managed objects, which
represent a conceptual view of network resources that need to be monitored or controlled. The manager’s role is to maintain a global
view of the network and to control, coordinate, and monitor network activity. The manager also issues requests for operations to be
performed by the agent and then receives notifications emitted by the managed objects and sent by the agent. The agent’s role is to
maintain its portion of the MIB, receive and execute requests sent from the manager, and send notifications to the manager when
necessary (see Fig. 1).

Notifications and ResponsesRequests

System 1

CMIS

Manager

Protocol
Stack

(CMIS/CMIP
or SNMP)

Manager ManagerProcess

MIB

Managed
Resources

Network

Managed
Objects

Fig. 1. The agent/manager model.

System 2

Protocol
Stack

(CMIS/CMIP
or SNMP)

Agent

ASN.1 (Abstract Syntax Notation One, or ITU standard X.208). This is a description language used to define the data types exchanged
between systems.

BER (Basic Encoding Rules). A method for encoding data in the OSI environment.

CMIP (Common Management Interface Protocol). This is half of the OSI’s systems management protocol (the other half is CMIS). CMIP
uses the agent/manager paradigm to communicate management information between systems. This protocol differs from SNMP in that
it is more rigorous, is designed for open systems, and is an association-oriented protocol, requiring the two communicating CMIP
processes to establish an association before sending any management messages. This association is governed by ROSE and ACSE. See
Article 6 for more about CMIP.

CMIS (Common Management Information Service). This is the part of the OSI systems management protocol that enables management
applications to communicate in the OSI environment. CMIS offers a set of services that provide for management operation, retrieval of
information, and notification of network events (see also CMIP). See Article 6 for more about CMIS.

Containment. In an object-oriented hierarchy, containment defines the relationship between a parent object and a child object.

Contracts. In the context of the Distributed Processing Environment (DPE), contracts are the way in which objects in one building block
(a software package containing several objects) describe their interfaces to objects in other building blocks. See Article 2 for more
about contracts and DPE.

CORBA (Common Object Request Broker Architecture). This is an implementation of the Object Management Group’s specification of an
object request broker. An object request broker provides the services that enable objects to make and receive requests and responses
in an object-oriented distributed environment.

Distributed Processing Environment. This is a platform for managing and controlling distributed computing in a TMN network.

GDMO (Guidelines for the Definition of Managed Objects). These guidelines define how network objects and their behavior are
specified. For example, GDMO can be used to specify how a certain system command (software object) should behave when executed.
See Article 5 for more about GDMO.

http://www.hp.com/hpj/oct96/oc96a6.htm
http://www.hp.com/hpj/oct96/oc96a6.htm
http://www.hp.com/hpj/oct96/oc96a2.htm
http://www.hp.com/hpj/oct96/oc96a5.htm

Glossary October 1996 Hewlett-Packard Journal 2

Managed Object. This is a conceptual view of a logical or physical resource that needs to be monitored and controlled to avoid network
failure and performance degradation. A managed object is defined in terms of its attributes, operations that can be performed on it,
notifications it may emit, and its relationship with other objects.

MIB (Management Information Base). This is a structured collection of managed object instances and their attributes. See Article 7 for
more about the MIB.

Mediation Device. This element of the TMN architecture is responsible for protocol conversion, information conversion and storage,
data buffering, and filtering. This is probably the most vaguely defined element in TMN and its functions are sometimes implemented in a
Q adapter.

Network Elements (NE). These elements represent the devices that make up a telecommunications network. It is assumed that an NE is
“intelligent” enough to have the possibility of generating and transmitting some kind of information useful for network management
(alarms, status, etc.). All NEs produce for external use some sort of internal alarms, both urgent and nonurgent. These alarms are
representative of internal faults. Urgent alarms indicate a need for immediate maintenance. Network elements play the role of managed
objects in the agent/manager model. The Article 1 contains more about network elements.

OAM&P (Operation, Administration, Maintenance, and Provisioning). These are the functions required to solve the complex problem of
providing telecommunications network management.

OMG (Object Management Group). This is a nonprofit international corporation made up of a team of dedicated computer industry
professionals from different corporations working on the development of industry guidelines and object management specifications
to provide a common framework for distributed application development.

Operations Systems (OS). These are the applications where network management takes place. They can be thought of as supervisory
or control systems that receive a large amount of data from the network and provide for its elaboration and for the generation of data
useful for management purposes. Article 1 contains more about operations systems.

Q Adapter. This is a TMN element that is used to connect a TMN system to a non-TMN system. Article 1 contains more about
Q adapters.

Q3 Interfaces. These are a set of interfaces used within and between layers in the TMN architecture to exchange management
information. Q3 interfaces are responsible for connecting an operations system to a network element, an operations system to a
Q-adapter, an operations system to a mediation device, or two operations systems in the same TMN. Article 1 contains more about
Q3 interfaces.

ROSE (Remote Operation Service Element). This is a generic OSI service that allows applications to invoke request and reply
interactions with applications on remote systems. Article 1 contains more about ROSE.

SNMP (Simple Network Management Protocol). This is TCP/IP protocol that defines how to manage a network. SNMP uses the
agent/manager model to monitor and administer the network. SNMP is based on a connectionless protocol, which requires no
established connection between manager and agent before transmission.

Trader Service. This is a matchmaking service for clients and servers in a Distributed Processing Environment. A server registers its
capabilities in the form of a contract with an entity called a trader, and when a client needs a capability in a certain contract type, it uses
the trader service to find the server that has the particular capability. See Article 2 for more.

Telecommunications Management Network (TMN). TMN, which is defined in ITU-T Recommendation M.3010, is a management
communications concept that defines the relationships between basic network building blocks (network elements, different network
protocols, and operations systems) in terms of standard interfaces. See Article 1 for more about TMN.

XMP (X/Open Management Protocol).This protocol provides the TMN application developer with a C-language interface to the
underlying CMIS/CMIP and SNMP protocol services. XMP APIs use XOM objects as parameters. See Article 6 for more.

XOM (X/Open OSI Abstract Data Manipulation). A C-language interface designed for use with application-specific APIs that provide OSI
services, such as X.400 and CMIS. XOM APIs provide functions for accessing managed objects and shield programmers from the
complexities of the ASN.1 data types in the MIB. See Article 6 for more.

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a7.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a2.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a6.htm
http://www.hp.com/hpj/oct96/oc96a6.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a2.htm

Article 2 October 1996 Hewlett-Packard Journal 1

Distributed Processing Environment:

A Platform for Distributed

Telecommunications Applications

Vendors developing applications for a heterogeneous, distributed
environment need to be able to build towards a platform that
integrates all the management and control functions of distributed
computing into a unified software architecture that allows their
applications to be available from any point in the network
regardless of the system or geographic location.

by Frank Leong, Satya P. Mylavarabhata, Trong Nguyen, and Frank Quemada

The HP Distributed Processing Environment (DPE) provides infrastructure services that facilitate the rapid development,
deployment, and management of distributed applications in the telecommunications arena. DPE is a key component of the
Telecommunications Information Networking Architecture (TINA), an architecture for multimedia networks that emphasizes
distribution and interoperability of telecommunications applications. TINA is an evolving architecture and is governed by the
TINA Consortium (TINA-C), which is a project sponsored by 40 leading telecommunications and computing companies. The
project’s aim is to find a way to integrate all telecommunications management and control functions into a unified logical
software architecture supported by a single distributed computing platform.

This paper describes the architecture and components that make up HP DPE, a product that is compatible with (and will
evolve with) the TINA specifications.

INA, TINA, and DPE
HP DPE and TINA have a common root in the Information Networking Architecture (INA), which was originally developed
at Bellcore. TINA’s architecture specifies a distributed processing environment based on the original INA DPE specifications.
HP DPE provides key infrastructure services for INA and TINA.

INA defines a methodology and framework for developing, providing, and maintaining highly distributed systems,
characteristic of the next generation of communications environments. INA leverages and combines the efforts of multiple
standards bodies, research organizations, development organizations, and consortia (e.g., TMN, OSCA, OSF/DCE, OMG
CORBA, OSI/NMF, etc.). Fig. 1 shows the relationship between INA DPE and the TMN (Telecommunications Management
Network) model. TMN is described in Article 1 and the DPE services are described later in this article.

INA applications and services are deployed as software modules called building blocks. A building block is made up of
several objects and can be installed and modified independently of other building blocks in the network. Building blocks
interact with one another via interfaces called contracts. Contracts are the exposed interfaces of an object in that they are
used for communication between building blocks. They are also backward compatible to ensure interoperability between
software objects contained in multivendor building blocks. Contracts are subject to authentication and access control
checks.

A building block can be a server or a client or both. A server must offer one or more contracts to allow clients to interface
and make use of its services. In the DPE architecture (described below), applications are modeled as building blocks. The
DPE itself is made up of server building blocks (e.g., contract trader, repository, etc.) which offer contract interfaces to
application client building blocks.

The INA structure enables distributed software building blocks from multiple suppliers to interoperate. This distributed
object computing results in faster software development since there is greater software reuse and modularity in design.

In summary, INA is a framework for interoperability, portability, and network resource management. The following goals
have been established for INA:

� Rapid and flexible introduction of new services

� Reuse of software modules

� Use of general-purpose solutions

� Multivendor hardware and software solutions

� Independence of applications from the transport implementation technology

http://www.hp.com/hpj/oct96/oc96a1.htm

Article 2 October 1996 Hewlett-Packard Journal 2

Managed
Object
Agent

INA
DPE

Services

Application Application

Application Application

Application Application

Application Application

Managed
Object
Agent

Native Computing and Communication Environment

Business
Management
Layer

Service
Management
Layer

Network
Management
Layer

Element
Management
Layer

Network
Element
Layer

Fig. 1. The INA DPE architecture applied to the Telecommunications Management Network (TMN).

TMN Layers

� Separate transport technologies from higher-level control and OAM&P (operation, administration,
maintenance, and provisioning)

� Allowance of customer access to OAM&P services

� Seamless integration of services

� Network and element management.

DPE Architecture
Fig. 2 shows the components and services that make up the DPE architecture.

Application

Node
Controller

DPE Kernel

Application

Contract Adapters
(DPE APIs)

HP
OpenView DCE RPC CORBA

Repository

Contract
Trader

Register

Management
Front End

DPE Services

Fig. 2. Components of the DPE architecture.

Article 2 October 1996 Hewlett-Packard Journal 3

DPE Kernel. The DPE kernel provides the foundation for building block interaction and execution services. To implement
these services, the DPE kernel uses the services provided by the underlying native computing and communications
environment, which include:

� DCE: threads, security, RPC, and IDL compiler

� CORBA: HP ORB+ with IIO and DCE CIO protocols and C-IDL compiler

� HP OpenView components: XMP API, pmd (postmaster daemon), orsd (object registration service), and ovead
daemon (event sieve agent).

The DPE kernel is resident in every node of a distributed system. Building blocks and other DPE components at a node
cannot access the DPE kernel at other nodes directly. Access to the DPE kernel services at a remote node is accomplished
using the interprocess communication facilities of the native computing environment of the node.

Contract Adapter. A contract adapter is an application programming interface that provides all the transparencies required by
a client or server building block. It also provides an API for accessing either application-level services or services provided
by DPE. Contract adapters are kept as library modules which can be linked with building blocks before or during execution.

The inclusion of adapters as components of DPE implies that the components of DPE increase over time as new applications
are deployed in a network. When a contract type is specified and registered for some application-level service, adapters for
these contract types can be automatically generated and made a part of DPE.

DPE Services. Each DPE service is a building block and access to its functions is only through contracts offered by the DPE
service. A node may have zero or more DPE services installed. Since access to a function provided by a DPE service is
available only through a contract, a building block or a DPE service in a node can use the functions provided by a DPE
service in a remote node. Thus, DPE services depend on the communication and execution services provided by the DPE
kernel. References to contracts of some of the DPE services, such as the trader, can be passed to a building block when it is
activated.

Although both DPE services and applications are built using the concepts of building blocks and contracts, there is a
fundamental difference between the two. DPE services do not provide network resource management functions, nor do they
provide telecommunications services to network customers. These functions are provided only by applications.

Fig. 3 shows the interactions among the DPE services shown in Fig. 2. An arrow directed from one service to another
indicates that the source service provides services to the destination service.

Node
Controller

Repository Trader

Front End

Registrar

Building Blocks

DPE Kernel

Fig. 3. Interrelationships between different components in the DPE services.

Contract Trader. This DPE service provides a discovery service for client and server building blocks. It is the key service for
providing location transparency in a distributed network. When a building block offers a contract, information about this
contract is conveyed to the DPE kernel. This information includes the name of the corresponding contract type and the
value of the service attributes provided by the contract. DPE stores this information in the repository.

When a client wishes to invoke an operation defined in a specified contract type, it queries the DPE trader for one or more
references to contracts that match the specified type and whose service attribute values satisfy a constraint expression
supplied by the client. Regardless of where the server is physically located, the client can discover servers at run time, based
on the latest contract information recorded in the repository database. The DPE trader provides two types of contract
trading: attribute-based trading and resource-based trading.

The attribute-based form of contract discovery is based on the specified contract type and a constraint expression involving
any number of the service attributes. The constraint expression used by HP DPE is modeled after the ANSAware 2.0

Article 2 October 1996 Hewlett-Packard Journal 4

constraint language. This language supports relational operators on attributes and maximum, minimum, and logical
operators. This provides a great deal of flexibility in how a client discovers a server.

An example of a constraint expression might be a request to find one or more print servers that can print in color, provide A4
size paper, and use PostScript fonts. The constraint language would express this request as: attribute_list = color, A4, postscript. If
we need a certain capacity and speed for the printer, we might add a request for faster than six pages per minute: attribute_list > 6.

A resource-based form of contract discovery is an extension of attribute-based trading and is used by resource management
applications. In resource management applications, it is typical to provide service over a domain of resources. This domain
may be dynamic. An example would be a connection management application that is responsible for providing connection
management services to all clients whose phone numbers (domain) begin with area code 408 and have the exchange number
447. This application may offer contracts over a domain that may vary in size depending on how many phone numbers are
actually assigned (e.g., all the numbers following 447). This type of trading requires the client to supply a contract type name,
a constraint expression, and the name of the resource. With this information the HP DPE trader can locate a server offering a
contract of the appropriate type that satisfies not only the search constraint expression, but also the specified resources.

Repository Server. This DPE service maintains persistent information for the operation of DPE. It stores specifications of
trading attributes, contracts, building blocks, and configuration information. The repository server provides operations for
the creation, retrieval, update, and withdrawal of DPE-persistent objects. These reference objects are used to initialize,
activate, deactivate, and withdraw contract and building block instances using a generic front-end administrative tool.
This server is implemented using the ObjectStore 4.0 OODBMS from Object Design Inc.

The information stored in the repository can be used for several purposes. The DPE front end can traverse repository
information to help application developers locate potential reusable attribute types, contract types, and building-block type
specifications. It also provides type information that allows the DPE controller to check for valid operation parameter types
at run time. The following three kinds of information are stored in the repository:

� Specification information. This consists of information contained in contract type specification templates and
building-block type specification templates registered with the DPE repository.

� Configuration information. This consists of information contained in the building-block configuration
templates, contract configuration templates, and node configuration templates registered with the DPE
repository. This means that the repository contains information needed for managing building-block
instantiating operations or startup operations.

� Trading information. This consists of information that supports trading operations, specifically contract types
and contract instances.

Registrar. This DPE service provides registration and withdrawal services for the various templates used in the operability
services, including specification templates, installation templates, and configuration templates. Its function is to parse and
verify the correctness of the specification templates before invoking the registration operation of the repository server.

Node Controller. The node controller at each node provides activation, deactivation, monitor, and restart functions for
building blocks configured in that node. It receives notifications when a building block is started and deactivated, and
continuously monitors the “liveness” of all building blocks executing in the node. Since the implementation of these
functions is dependent on the native computing environment’s facilities, one instance of the node controller building block
is required in each node.

Management Front End. HP DPE provides a graphical front end and a command line interface to DPE system administration,
building-block management, repository browser functionality, and DPE shutdown and restart functions. This user interface
offers a generic and uniform way of managing the whole DPE domain from any node. DPE objects present in the GUI are
organized in a hierarchical structure similar to the renowned Smalltalk browser. This structure is organized as nodes,
building block types and instances, and contract types and instances (see Fig. 4). The DPE front-end interface provides
the following functions:

� Contract building-block type registration

� Activation, shutdown, and withdrawal of building-block instances

� Activation, shutdown, and withdrawal of contract instances

� Setup and modification of contract trading attributes

� Browser for DPE objects.

With the command line interface, routine DPE administrative tasks can be automated using shell script languages.

DPE Telecommunications Examples

This section provides two examples of the use of HP DPE in the design and deployment of telecommunications services and
applications. The steps illustrated in these examples present a high-level view of the communications that occur. The actual
designs are much more complex. Also, to reduce the complexity of the figures, three assumptions have been made:

Article 2 October 1996 Hewlett-Packard Journal 5

Fig. 4. The DPE graphical user interface.

� All interfaces that are used have already been registered with the DPE registrar, and binding information for
each interface is available from the DPE repository.

� All communication with the DPE trading service is done via an RPC mechanism.

� Most applications will either trade at initialization time to obtain binding handles or simply use a well-known
address to maximize throughput. Trading during execution will most likely be reserved for those occasions that
dictate the need for dynamic binding. For illustrative purposes, however, the examples show trading occurring
for each initial communication between any two modules.

Example 1: Permanent Virtual Circuit Service
The most basic connection service provided by broadband networks is a permanent virtual circuit (PVC) service. This
service provides the capability of setting up a connection between two or more points with given bandwidth and
quality-of-service (QoS) parameters. Typically PVCs are long-term connections used to interconnect LANs or provide
long-term video service between distant points. Fig. 5 illustrates how a simple PVC service might be designed using
an architecture based on INA. Each of the following steps corresponds to a number in Fig. 5.

Presentation

Application

Management

Platform

Connected Management Module

PVC Presentation Module

PVC Processing Module

Distributed
Processing

Environment

Connection
Data Building

Block

1

3

5 and 8

2

4

6 7

10

11

9

Managed Object Agents
and Network Elements

Fig. 5. The architecture for a permanent virtual circuit service.

1. The PVC presentation module consults with the DPE trading service for the location of the PVC processing
module applications. This communication is done via an RPC (remote procedure call) interface.

2. The PVC presentation module provides the PVC processing module with the user input parameters that define
the PVC being requested. This communication is done via an RPC interface.

3. The PVC processing module consults with the DPE trader to locate the connection management application
server that controls the switch servicing the originating end of the PVC. This is done via an RPC interface.

4. The PVC processing module uses the DPE RPC mechanism to access the connection management application.
If the connection requires more than one switch, the connection manager will trade for and bind to another
connection manager to move the connection towards the termination point (this is not shown in Fig. 5).

Article 2 October 1996 Hewlett-Packard Journal 6

5. The connection manager trades for the binding handle of the managed object agent that services the
originating (and terminating if local) points. For performance reasons, in most designs this step is done at
system initialization time.

6. The connection manager instructs the managed object agent to connect the originating end using the DPE
system management protocol CMISE (Common Management Information Service Element).

7. The connection manager instructs the managed object agent to connect the terminating point using the CMISE
protocol.

8. The connection manager uses RPC to request a binding handle from the connection data building block.

9. The connection manager requests the connection data building block to update its data store to reflect the
addition of the new PVC connection. The communication is done via RPC.

10. The connection manager reports the establishment of a connection back to the PVC processing module via an
RPC.

11. The PVC processing module returns the status of the connection establishment back to the PVC presentation
module for display to the user.

Example 2: Switched Virtual Circuit Service
This example shows that the modularity and code reuse capability of the DPE architecture can be used to add new features.
The switched virtual circuit implementation shown in Fig. 6 provides users with the capability to establish or reconfigure
existing connection sessions at any time, much like voice telephony service. As shown in Fig. 6 the connection management,
data building block, and managed object agents are all being reused. Only the top two modules need to be replaced with new
code.

Presentation

Application

Management

Platform

Connected Management Module

SVC Presentation Module

SVC Processing Module

Distributed
Processing

Environment

Connection
Data Building

Block

1

3

5 and 8

2

4

6 7

10

11

9

Managed Object Agents
and Network Elements

SVC Switched Virtual Circuit

Fig. 6. The architecture for a switched virtual circuit service.

Summary
This paper has presented an overview of the HP DPE implementation. DPE plays a key role within the Telecommunications
Information Networking Architecture (TINA). HP DPE offers a development environment to develop distribution
transparency for both RPC-based and CMIP-based INA-compliant applications. This paper has also detailed the services
provided by HP DPE and described the implementation of the contract trading servers and contract adapters, the key
components providing distribution transparency.

Acknowledgments
The authors would like to acknowledge other members of the development and product team: Joel Fleck, Bruce Greenwood,
Hai-Wen Liang, David Wathen, and Chris Liou.

PostScript is a trademark of Adobe Systems Incorporated which may be registered in certain jurisdictions.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a3.htm

Article 3 October 1996 Hewlett-Packard Journal 1

HP OEMF: Alarm Management in

Telecommunications Networks

This article explains the HP OpenView Element Management
Framework concept, which is based on the HP OpenView Fault
Management Platform (FMP) and complements the functionality of
the FMP to provide an integrated network management solution.
This article also explains the FMP, which facilitates efficient
management of alarms in a telecommunications network, and the
open APIs provided in the FMP, which allow seamless integration
with other applications.

by Sujai Hajela

There has been an unprecedented growth in the telecommunications industry around the globe. The rapid evolution of new
technologies, the offering of a broad spectrum of data services, and the need to have fast access to information are some
of the factors that have contributed to a tremendous increase in the number of subscribers to telecom services. This has
imposed great demands on the telecommunications networks of both public and private operators. To keep up with the
demand, telecom operators are expanding their existing infrastructure at a hectic pace. Furthermore, deregulation of the
telecommunications industry has led to the emergence of a number of private service providers, and this has created keen
competition within the industry. A good quality of service at an economical price has become a key factor for service
providers to increase their customer bases.

Telecommunications Management Network
Offering a high quality of telecom services and at the same time generating high revenues requires efficient management
of telecommunications networks by the service providers. The Telecommunications Management Network (TMN) defines
activities that aid in managing a telecommunications network. According to ITU-T Recommendation M.3010, a TMN is
intended to support a wide variety of management areas including planning, installation, operations, administration,
maintenance, and provisioning of telecommunications networks and services. The following five functional areas have been
identified in TMN (ITU-T Recommendation M.3400):

� Fault management

� Configuration management

� Performance management

� Security management

� Accounting management.

Fig. 1 shows the TMN functional blocks and components. The TMN architecture consists of the functional architecture, the
information architecture, and the physical architecture. The TMN functional architecture defines the following blocks:

� Operations systems function (OSF)

� Mediation function (MDF)

� Network element function (NEF)

� Workstation function (WSF)

� Q adapter function (QAF).

The TMN information architecture defines the information exchanged between these functional blocks.

The TMN physical architecture provides a means to transport and process information. The physical architecture is made up
of the following types of physical components:

� Operations system (OS). Performs OSF.

� Mediation device (MD). Performs MDF.

� Q adapter (QA). Performs QAF, that is, connects network elements and operations systems with noncompatible
interfaces to OSI Qx and Q3 interfaces.

� Data communications network (DCN). Performs data communications function (DCF), which is used by the
TMN functional blocks to exchange information.

Article 3 October 1996 Hewlett-Packard Journal 2

Network
Element

(NE)
NEF

Network
Element

(NE)
NEF

Network
Element

(NE)
NEF

Data Communications Network
(DCN)

DCF

Workstation
(WS)

Workstation
(WS)

Operations
System

(OS)
OSF

Q3 InterfaceQ3 Interface

Q3 Interface

Qx Interface

Mediation
Device
(MD)

MDF

QAF

Q Adapter

Fig. 1. Telecommunications Management Network (TMN) functional blocks and

components. (F = function, e.g., OSF = operations system function.)

� Network element (NE). Performs NEF.

� Workstation (WS). Performs WSF.

OpenView Element Management Framework
The HP OpenView Element Management Framework (OEMF) aims to provide a set of management activities defined in ITU-T
Recommendation M.3400 to facilitate efficient management of a telecommunications network. The functional areas covered
within the OEMF are fault management (including trouble management), performance management, and other third-party
applications to complement the existing set of applications under the OEMF umbrella—for example, configuration
management and asset management.

OEMF is an open system that makes possible the detection, isolation, and correction of abnormal operation of the
telecommunications network. OEMF consists of the HP OpenView Fault Management Platform (FMP) integrated with the
Trouble Ticketing System provided by Remedy and the Performance Management System from Metrica. Other third-party
applications for inventory, asset, and configuration management have also been integrated. Integration with test and
measurement products like HP AcceSS7 further enhances the OEMF functionality.

Fig. 2 illustrates the physical architecture of the OEMF. OEMF has a distributed architecture in which different management
activities can reside on different servers or on the same server. OEMF offers application availability, that is, if one of the
management activities ceases to function, the operator can still execute the functionality provided by the other applications.

In the TMN hierarchy, OEMF resides between the network management level and the element management level (Fig. 3).
It can manage the network elements directly or can be interfaced to an existing element manager to manage the network.
Providing this flexibility to OEMF are a rich mediation service and APIs (application programming interfaces) for integrating
with customer-specific data collection mechanisms.

Article 3 October 1996 Hewlett-Packard Journal 3

DCNDCN

OEMF Performance
Management Server

OEMF
Workstations

OEMF
Mediation
Devices

OEMF
Configuration

Management Server

OEMF
FMP Server

Legacy
Network
Elements

Q3
Network
Elements

Data
Communications

Network

Data
Communications

Network

Fig. 2. Physical architecture of the HP OpenView Element Management Framework

(OEMF). FMP is the HP OpenView Fault Management Platform.

Business
Management

Level

Service
Management Level

Network Management Level

Element Management Level

Network Elements

SDH
EMS

Vendor-
Specific

EMS

Vendor-
Specific

OMS

SDH
EMS
OMS

= Synchronous Digital Hierarchy
= Element Management System
= Operations Management System

OEMF

Fig. 3. In the TMN hierarchy, the HP OEMF resides between the network

management level and the element management level.

Article 3 October 1996 Hewlett-Packard Journal 4

Fault Management Platform
The FMP is a fault management platform that provides utility tools for managing alarms from multivendor devices and
network element managers. It is based on the HP OpenView Distributed Management Platform. It has an extremely open
architecture, which facilitates a seamless integration of third-party applications, as manifested by the OpenView Element
Management Framework described earlier. Fig. 4 illustrates the FMP functional blocks. The main components of the FMP are
the mediation device block, the FMP server block, and the graphical operator interface.

Performance
Measurement

Trouble
Ticket

Network
Map

Alarm
Handler

Problem Management Service

HP OpenView
 Distributed Management

Graphical Operator Interfaces

FMP ServerSwitching
Networks

Transmission
Networks

Data
Networks

DCN

MD

MD

MD

DCN

DCN

DCN

Network
Elements

Data
Communications

Networks
Mediation
Devices

Data
Communications

Network

CMIP-
LITE

CMIP-
X.733

Fig. 4. Functional blocks of the fault management platform (FMP) of the OEMF.

The mediation device block provides the mediation and Q adapter functions and the FMP server provides the operations
systems function. The mediation device logs, formats, filters, maps, and finally correlates all alarms it receives from network
elements into ITU-T X.733 alarm reporting format and sends these alarms to the FMP server for alarm management. The
mediation device can send the alarms to the FMP server using the CMISE protocol over the CMIP stack provided by the HP
OpenView Distributed Management Platform, or optionally, using the CMIP-LITE protocol (an FMP representation of the
X.733 alarm report) over TCP/IP.

The FMP server performs the problem condition management services. It provides graphical operator interfaces to aid in the
management of the alarms being received from the network elements (which are performing the network element function).
These graphical interfaces provide the means to interpret TMN information for the management information user. They
perform the workstation function.

The FMP provides the fault management activities in a telecommunications network. However, to manage a
telecommunications network, other management activities such as trouble management, performance management, and
configuration management are also required. This requirement contributed to the OEMF concept, which allows a broad
spectrum of best-in-class applications, regardless of manufacturer, to be integrated with FMP to provide an integrated
network management solution. This integration is made possible by a range of open APIs provided in the FMP. The HP
OpenView Distributed Management Platform APIs further enhance the integration capabilities.

Mediation Device Block
The mediation device logs raw alarms, formats and filters alarms from events, correlates these alarms, and then forwards
them to the FMP server in the X.733 alarm reporting format. The mediation function is extremely important as the FMP
server receives and manages alarms in a heterogeneous, multivendor, multinetwork environment in which the network
elements send events in varying formats. Fig. 5 illustrates the functional blocks within the mediation device.

The mediation device provides a set of data collectors, which collect data over RS-232, TCP/IP, and SNMP. Reports in X.733
format can be sent directly to the FMP server using CMIP protocol. For data collection over X.25 and other types of
networks, customer-specific data collectors can be written using mediation device connection APIs. These data collectors
forward the events to the event logging module, which logs them into raw log files. The event logging module forwards the
valid events to the event formatting module, which parses the incoming events and then classifies and formats them into
message classes based on the parsing rules defined in the configuration. These formatted events are then logged into
message class files corresponding to the message classes. The event formatting module forwards the events to the event
mapping module, which filters the alarms from events, converts the alarms into the X.733 alarm report format and forwards
them to the event filtering and correlation module. The correlation module correlates repeated alarms, transient alarms, and
related alarms for a network element. The FMP supports a two-stage correlation approach in which the correlation

Article 3 October 1996 Hewlett-Packard Journal 5

Data
Collector

Event
Logger

Report Log File

Report
Messages

Configuration
Files

Raw Log File

Invalid Messages
Valid Messages

Message
Class-Based

Log Files

Unknown
Log File

Network
Elements

Event
Formatter

Events

Events
Mapper

Events Events

Event Filtering
and

Correlation

FMP Server
Interface

FMP Server

Alarms

Formatted Messages

Raw Messages

Alarms
Alarms

Filtering
Rules

CMIS
Event
Mapping

Mediation Device

Fig. 5. Mediation device functional block diagram.

functionality is provided at the mediation device and at the FMP server. The correlation module forwards the alarm to the
module interfacing to the FMP server. This module encodes the alarm into CMIP and sends it over the CMIP stack provided
by the HP OpenView Distributed Management Platform or optionally (depending upon the configuration) encodes the alarm
into CMIP-LITE and sends it over TCP/IP to the FMP server.

Correlation in the FMP
The FMP allows two stages of event correlation: one at the mediation device level and the other at the FMP server level.
The correlation at the FMP server is done across the network being managed because the server has access to the topology
database. The correlation at the mediation device is restricted to the network elements to which the mediation device is
connected. The correlation at the mediation device level is done primarily to prevent not-so-important data from being
forwarded from the mediation device to the FMP server.

The FMP has two types of correlation: repeated/transient correlation and root-cause/related correlation. Repeated/ transient
correlation correlates alarms that are identical (they may have different severities) and are being emitted continuously by a
network element. Root-cause/related correlation correlates alarms that have occurred because of a root-cause alarm and are
not as important to the operator.

Let’s take an example of root-cause/related correlation in a GSM network. Assumptions:

� MSC-1 is connected to BSC-1 which is connected to BTS-1 through BTS-4.

� An alarm A:MSC-1 (that is, an alarm of type A:MSC at MSC-1) causes an alarm B:BSC-1 (an alarm of type B:BSC at
BSC-1).

� The alarm B:BSC-1 causes an alarm C:BSC-1.

� The alarm C:BSC-1 causes alarms D:BTS-1, D:BTS-2, D:BTS-3, and D:BTS-4.

� Of all these alarms, only A:MSC-1 is significant.

Article 3 October 1996 Hewlett-Packard Journal 6

Fig. 6 illustrates the scenario. Based on the above assumptions, if an alarm A:MSC-1 occurs, the operator will also receive the
alarm B:BSC-1 which will further cause alarms C:BSC-1 and D:BTS-1 through D:BTS-4. Even though the real problem is with
MSC-1, the operator receives numerous alarms, many of which are of no significance.

MSC-1

BSC-1

BTS-1

Re-
sourc

e

BTS-2 BTS-3

BTS-4

A:MSC

D:BTSD:BTS

D:BTS D:BTS

C:BSC

B:BSC

Fig. 6. Scenario of alarm generation in an example GSM network without correlation.

Many extraneous alarms can be generated in addition to the root-cause alarm.

Let’s specify the correlation rules to be as follows (the format of the event correlation rules specification has been simplified
to explain the concept):

Rule 1: ROOTCAUSE : A:MSC RELATED : B:BSC
Rule 2: ROOTCAUSE : B:BSC RELATED : C:BSC
Rule 3: ROOTCAUSE : C:BSC RELATED : D:BTS

Correlation window: 20 seconds

With these correlation rules in effect, the operator will receive only the alarm A:MSC-1, which is the significant alarm. This
behavior is illustrated below:

Correlation window (total elapsed time) = 20 seconds
|<--->|
 |
Arrival of A:MSC-1 -->|-->A:MSC-1 sent |
Arrival of B:BSC-1 --------->| |
 (correlated by rule 1) |
Arrival of C:BSC-1 ------------->| |
 (correlated by rule 2) |
Arrival of D:BTS-1-------------------->| |
 (all BTS correlated by rule 3) |
Arrival of D:BTS-4 --------------------------->| |
 |
 End of Correlation Window---------------------->|

All alarms matching the correlation rules and occurring within the correlation window are subject to correlation. The
correlation window can be a fixed or a sliding window. The arrival order of alarms is not important—in the above example,
the alarms could have arrived in any order. As long as they arrive within the correlation time window, they get correlated.
If a related alarm arrives before a root-cause alarm, it is held in the correlation module until the end of the correlation
window. If the root-cause alarm does not arrive within the time window, the related alarm is sent out as uncorrelated. If the
root-cause alarm arrives before the related alarms, it is sent out immediately. In the scenario above, the A:MSC-1 is sent out by
the correlation module immediately and is not held back until the end of the correlation window.

Event correlation services are available in HP OpenView Distributed Management Platform 4.21 as an option (see Article 4).
Event correlation services further complement the event correlation provided by the FMP and, when integrated with the FMP,
greatly enhance the correlation functionality of the FMP.

FMP Server Block
The FMP server provides problem management services. It logs, correlates, and distributes the alarms to the graphical
operator interfaces. Fig. 7 shows the functional blocks within the FMP server.

An alarm is received from the mediation device (there may be one or more mediation devices) either in CMIP or CMIP-LITE
by an interfacing module, which decodes and forwards it to the alarm logging module. The alarm logging module logs the
alarm in the alarm database. This alarm is then passed to the alarm correlator module for correlation. This is the second

http://www.hp.com/hpj/oct96/oc96a4.htm

Article 3 October 1996 Hewlett-Packard Journal 7

Mediation Device

Status
Manager

Client

Network
Map

Map
Database

Alarm
Viewer

Trouble
Ticketing
System

Alarm
Handler

Alarm
Distributor

Network
Status

Monitor

Status
Manager

Alarm
Correlator

Mediation
Device
Server

Interface

Alarm
Logger

Alarms

Alarms

Notify

Notify

Alarm Reports

Status Propagation

FMP Server

Topology
Database

Alarm
Database

OpenView
Windows
Database

Fig. 7. FMP server functional block diagram.

stage of correlation, the first being at the mediation device. Correlation at the FMP server is performed across the network
because the server has access to the topology information stored in the topology database, which resides at the server. After
correlation, the alarm is distributed to the alarm handling module and the network status monitor module. The alarm
handling module manages problems. Every alarm need not be a new problem—many alarms may be sent for the same
problem. The alarm handling module identifies the alarm as belonging to a problem if it originates from the same network
element and has the same probable cause and specific problem fields as the problem (these fields are specified by ITU-T
X.733). The alarm handling module checks whether a problem condition already exists for the alarm received. If it does, then
an update to the problem is sent to all the connected alarm viewers. Otherwise, a new problem condition is created and sent
to the alarm viewers depending upon the span of control defined for each alarm viewer.

The network status monitor is responsible for status propagation according to the configuration rules. Depending upon the
severity of the alarm, the network status monitor calculates and sets the status of the alarming network element on the
network map. The network status monitor calculates the status of objects based upon the severity of objects both on the
map and not represented on the map (nonmap objects). The need to support the concept of nonmap objects arises because
in a telecommunications environment, the number of objects being managed can be very large. Also, the operator may prefer
not to see all of the objects being managed on the map, but would want the status of the nonmap objects to be considered
while calculating the status of the higher-level objects (in the containment hierarchy) that are represented on the map.

The status manager server (or simply status manager) facilitates the submission of outage schedules and maintains
information regarding the outage of the network elements. Operators submit the outage information through the status
manager clients.

Graphical Operator Interfaces
The FMP includes a set of utility tools that provide a graphical interface for the operator to manage the telecommunications
network. The tools provided are the alarm viewer, the network map application, and the status manager clients for
submitting outage schedules.

Article 3 October 1996 Hewlett-Packard Journal 8

Alarm Viewer. The alarm viewer is an X11/Motif-based application that allows the operator to view the faults occurring in the
network being managed and provides facilities to take corrective actions to handle these faults. Fig. 8 shows the alarm
viewer window.

Fig. 8. Alarm viewer window.

The alarm viewer receives the problem condition from the alarm handling module. It allows the operator to select and
perform the following actions on the selected problem condition:

� Own

� Disown

� Discharge

� Locate

� View Problem Condition History

� Create Trouble Ticket

� View Details

� Print.

By owning a problem condition, the operator acknowledges the presence of a fault. The operator can then locate the
alarming network element on the network map and create a trouble ticket for the problem. Once the problem has been
rectified, it can be discharged. On being discharged, the problem disappears from the alarm viewer. An audit trail is
maintained in the alarm database regarding the actions performed on the problem. A list of all the alarms corresponding to
the selected problem condition is displayed by clicking the Problem Condition History button. The alarm viewer can be configured
to display only the fields in which the operator is interested. The Details button can be clicked to view the details of the
problem condition. A hard copy of the selected problem condition can be obtained by selecting the print option.

The alarm viewer provides visual aids for quick identification of the severity of the problem. The columns in the problem
condition row are color-coded and signify the outage, the severity, and the ownership status of the problem.

An operator can invoke an alarm viewer and perform actions on the selected problem conditions. However, operators need to
be registered with the FMP server, and their spans of control, or management domains, need to be defined. Their control
can be defined on the basis of the network instance, the network element class, and the network element instance. The
alarm handler ensures that all the alarm viewers are consistent in case there is overlap in the operators’ spans of control (it
is common to have multiple operators responsible for the same network elements). For example, if a problem condition is
owned at one alarm viewer, this owned status is propagated to other alarm viewers displaying this problem.

Alarm viewer menu options allow an operator to customize the alarm viewer. Operators can set their own sorting criteria for
problem condition display. They can also set their own view preferences, for example to view problems from a certain
network, view problems of a certain severity, view problems they own, and so on. These menu options offer flexibility and
convenience to help the operators efficiently manage the problems occurring in the network.

The alarm viewer allows external and customer-specific applications to be registered with it. A problem condition can be
selected and any of the registered applications can be invoked for the selected problem condition. This is an extremely
useful feature which allows integration of the FMP with best-in-class applications from any vendor to complement the FMP
functionality.

Network Map. The network map is an OpenView Windows application that displays the network being managed and the
status of the network elements within it. The network elements are represented by icons and the colors of the icons
represent their severity. The network map gets status updates from the network status monitor module. It allows the
operators to navigate through the managed network and isolate the network elements generating the problem conditions.

Article 3 October 1996 Hewlett-Packard Journal 9

It also allows updating of the topology either interactively through the menu options provided or programatically through the
map loader APIs. The network map can be customized by creating logical views of the network. Thus, an operator can
navigate through the whole network hierarchy while a manager can choose to look only at the status of the network at a
higher level without going into the details of the network elements within the network.

The network map has the FMP registered as an application. The FMP menu option allows the operators to invoke various
applications like the alarm viewer and the status manager clients.

Fig. 9 shows a network submap for an example GSM network.

Fig. 9. Network submap for a region in an example GSM network.

Status Manager Client. The status manager client is an X11/ Motif application that allows an operator to submit outage
schedules, that is, an operator can submit a proposal to put a network element out of service or restore a network element
back into service. The operator needs to be configured for the status management capability to submit the outage schedules.
The operator can specify the start and end times of the outages and whether the network element will be restored manually
or automatically to in-service status. If an alarm is generated by a network element that is in the outage state, it is flagged by a
different color in the first column of the alarm viewer. The FMP server can also be configured such that alarms from network
elements in outage status are not sent to the alarm viewers at all. Information regarding the outage status of the network
elements is maintained by the status manager server.

FMP Configuration
The mediation device has to be configured to be able to receive, format, and map events received from multivendor network
elements in the X.733 alarm format. The object model of the network being managed, the different types of network
elements, event correlation rules, operators’ spans of control, and status propagation rules all have to be configured.
Information regarding the mediation devices connected to the FMP server (the FMP server can be connected to more than
one mediation device) and any customer-specific data collectors connected to the mediation devices also needs to be
supplied.

FMP provides a screen-based GUI utility—the configurator—to aid in configuring the FMP and customizing it to manage a
heterogeneous telecommunications network.

Article 3 October 1996 Hewlett-Packard Journal 10

FMP Application Programming Interfaces
Throughout the design of the FMP, an open architecture and ease of integration were always given maximum importance. The
FMP allows seamless integration with other applications as a result of its rich set of C and C++ APIs. The various APIs are
described in the following paragraphs.

Data-Collector-to-Mediation-Device Connection APIs. These APIs can be used to write customer-specific data collectors to send
events received from the network elements to the mediation device. Apart from data collection, these data collectors can
also use these APIs to inform the mediation device regarding their operational status and to get information regarding the
operational status of the mediation device.

High-Level Parsing APIs. High-level parsing APIs facilitate the validation of events received from the network elements. The
data collectors can use these APIs to find the validity of an incoming event and flag the event as valid or invalid. This
information is used by the event logging module in the mediation device to tag the event as valid or invalid in the raw log.

Pseudocode for a sample data collector using the data collector and high-level parsing APIs is as follows:

main()
{
 Open the network element port
 for(;;)
 {
 If (Data received from network element
 port)
 {
 //High-level parse the input data
 //received
 FaultBuf = HLPParse(Data Received)
 //Send the structure returned by the
 //HLPParse to the mediation device
 DCSendFaultToMD(FaultBuf)

 }
 //Inform the mediation device if the
 //network element port is not OK
 If (Error in network element port)
 DCSendPortStatusToMD(Port is not OK)
 //If the mediation device is shutting
 //down, shut down this data collector
 If (((msg = DCReceiveFromMD(control
 message from MD)) == MM_SHUTDOWN)
 ShutdownThisDC();
 }
}

Log APIs. The mediation device logs raw data received from the network elements. It then classifies these events into
message classes and logs them in the corresponding message class file. The log APIs can be used to access these files. A
number of applications can use the mediation services of the FMP and have the data collected at the mediation device in a
format desired by them. These applications can then access this formatted information using the log APIs. Many interesting
and useful applications can be written using the mediation and logging services provided by the FMP. An example is a raw
log browser, which allows the operator to select an X.733 alarm from the alarm viewer and then extract and browse the raw
alarm data corresponding to the selected alarm.

Application Registration APIs. These APIs allow the registration of external applications with the alarm viewer and facilitate
passing information about the selected problem conditions to these applications. Application registration APIs can be used
to integrate customer-specific applications. Once registered, the applications can be invoked from the Applications menu
option of the alarm viewer. Taking the example of the raw log browser, the browser would first be registered with the alarm
viewer. Then a problem condition can be selected and the raw log browser application can be invoked. Assuming that a raw
log index is passed as some field in the X.733 alarm (e.g., rawlogindex as a part of additional information), this application can
use the APIs to extract this index, which can be used to access the raw log. The trouble management system provided under
the OEMF also uses these APIs. When a problem condition is selected and a trouble ticket is created for it, the trouble
ticketing application uses these APIs to get information regarding the problem condition.

Problem Condition Management APIs. These APIs allow an application to interface to the problem condition management
services. The alarm viewer uses these APIs. Customized alarm viewers, an automatic trouble ticketing application, an
automatic problem condition discharge application, and other applications can be written using these APIs. Take, for
example, an automatic problem condition discharge application for managing problems for which the switch normally does

Article 3 October 1996 Hewlett-Packard Journal 11

not send a clear event. Based on certain criteria like the age of the problem condition, its severity, and so on, this application
can be designed to discharge the problem condition automatically without any manual intervention from the operator.

Map Loader APIs. These APIs allow the customer’s topology to be loaded into the FMP without having to add the objects
manually into the FMP topology. This is extremely useful because the number of objects being managed can range anywhere
from 4000 to more than 40,000. Map loader applications can be written to access the topology database of the customer and
then populate the FMP topology using the map loader APIs.

Conclusion
The FMP APIs have led to the expansion of the number of products integrated under the OEMF umbrella. The FMP
integrated with other best-in-class applications provides an enhanced telecom network management solution for efficient
management of the multivendor, multi-equipment telecommunications networks of today.

Acknowledgments
I would like to acknowledge the members of the FMP team who have made it all happen, especially Chew Chye-Guan, Tok
Wu-Chuan, Kuan Siew-Weng, Lin Chee-Kheong, Ho Yong-Boon, Vasu Sankhavaram, Prem N. Devadason, and not the least,
project manager David Chua. Special thanks to the TMN, Integration Solutions Center, and Application Integration Center
teams whose valuable suggestions have contributed to the growth of this product.

Motif and Open Software Foundation are trademarks of the Open Software Foundation in the U.S.A. and other countries.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a4.htm

Article 4 October 1996 Hewlett-Packard Journal 1

HP OpenView Event Correlation Services

When a fault occurs in a telecommunications system, it can cause
an event storm of several hundred events per second for tens of
seconds. HP OpenView Event Correlation Services (ECS) helps
operators interpret such storms. It consists of an ECS Designer for
the interactive development of correlation rules and an ECS engine
for execution of these rules.

by Kenneth R. Sheers

Modern telecommunication technologies such as SDH/SONET (Synchronous Digital Hierarchy/Synchronous Optical
Network) and ATM (Asynchronous Transfer Mode) can generate large numbers of events when a fault occurs. Every logical
and physical element involved in delivering a service that uses the failed or faulty element can generate multiple events. This
can result in an event storm of several hundred events per second for tens of seconds. The task of telecommunications
operations staff is to determine the underlying cause from the thousands of events presented to them.

HP OpenView Event Correlation Services (ECS) is designed to deal with the problems associated with event storms in the
telecommunications environment. The theory from which HP OpenView ECS technology has evolved was developed by HP
Laboratories in Bristol, England.1 ECS is delivered as two distinct components: the ECS engine and the ECS Designer.

The ECS engine is a run-time correlation engine. It executes a set of downloaded correlation rules that control the
processing of event streams. At first release, the ECS correlation engine is integrated into the HP OpenView Distributed
Management (DM) postmaster.

The ECS Designer is a graphical user interface (GUI) development environment that allows the correlation rules to be
developed interactively by selecting, connecting, and configuring logical processing blocks. Once the rules have been
created, their operation can be simulated and visualized using a log of events input to a correlation engine attached to the
ECS Designer, with the engine’s concept of time controlled by the ECS Designer.

The correlation rules are created using a visual paradigm of nodes connected together to form a correlation circuit. Events
logically enter nodes via input ports and leave via output ports. An output port of one node is connected to an input port of
another node in the circuit, so that events flow through the circuit from one node to the next. The functional node types
provided with ECS are a superset of the basic types considered necessary and sufficient to perform real-time event
correlation.

An event correlation circuit, Fig. 1, constitutes a set of correlation rules that can be compiled and downloaded to an event
correlation engine. It consists of a series of interconnected and appropriately configured nodes, together with any associated
data and relationship information. Fig. 2 shows the ECS architecture and the relationship of the correlation circuit to the
ECS Designer and the ECS engine.

Filter
Node

Source
Node

Sink
Node

Modify
Node

Nodes

Connection
Output Port

Input Port

Control Port

Flow of Events

A B C D A D D

Correlation Circuit

Fig. 1. Generic correlation circuit. Correlation rules are

specified by such circuits.

Article 4 October 1996 Hewlett-Packard Journal 2

ECS DesignerNetwork and System
Management
Applications

ECS
Manager

ECS Run-Time
Correlation Engine

CMIPSNMP

HP OpenView
DM Postmaster

(pmd)

XMP API

Correlation
Circuit

Relationships
(Fact Store)

Data
(Data Store)

Events

Event Logs

Log and Trace

Fig. 2. Architecture of HP OpenView Event Correlation Services.

Real-Time Engine
A key differentiator of ECS compared with other correlation systems is that it operates in real time while taking into account
the real-world problem that events will often be delayed in the management network and delivered to the correlation system
out of order.

If events always arrived in bursts, it would be possible to buffer them on receipt and perform the correlation between bursts.
However, event storms may be continuous, and the correlation engine should be capable of receiving the events, decoding
them, and correlating them at the speed at which they arrive, continuously, without needing a mainframe to do the work. In
ECS, any buffering required for correlation of time-separated events is dynamic and completely integrated into the normal
engine operation.

In an ideal environment, a correlation engine is embedded into each piece of equipment that generates events. Correlated
events from each piece of equipment are forwarded to another correlation engine where correlation across multiple systems
is performed. This strategy reduces event volumes as early as possible, reducing the network traffic significantly. Thousands
of events can be reduced to only a few events at each level of correlation.

Delayed Events
If all events were delayed by an equal amount within the management network, the correlation would simply be some delta
time offset from real time. In a management network stressed by an event storm, some events will be delayed more than
others. Consider a scenario in which an event B is to be suppressed if a prior event A has been detected. An A event should
always occur two seconds before a B event.

Normally, it would be sufficient to remember that A had arrived, and when B arrives, discard it. But what if there has been
no previous A event? Was no corresponding A event generated, so that the B event should be forwarded, or has the A event
been delayed? If no A event has been received, it is necessary to hold B until there is no possibility of an A event arriving. If
an A event doesn’t arrive within some configured time, the B event should be transmitted. The permissible delay after which
the B event will be forwarded is dependent upon the probable worst-case delay for any particular management network.

For any event, the delay imposed by the management network is known as the transit delay for that event. All events are
considered to have a transit delay. ECS processes delayed and incorrectly ordered events in real time. Events can be
reordered within the engine and held by individual nodes until related events are delivered even if subject to significant
transit delays. Since events from multiple sources can be correlated, it is necessary that these sources have their clocks
synchronized within known limits.

Article 4 October 1996 Hewlett-Packard Journal 3

Information Concentration
ECS allows all pertinent information to be concentrated during correlation, with redundant and superfluous information
suppressed. The useful information can be forwarded to management systems using either new events created by ECS or
original events modified by ECS.

In the above scenario, a B event was to be suppressed if a corresponding, previously generated A event had been received
within a specified time window. It is possible that the B event contains some useful information not contained in the A event.
ECS allows the correlation engine to create a C event that contains the useful information from both the A event and the B
event, along with any public information. In this situation, both the A and the B events would be suppressed, while the C
event is transmitted. The event volume is reduced without losing any management information. Alternatively, the
information content of event A could be modified to include the useful information from event B.

Correlation Circuit
A correlation circuit is a set of interconnected and appropriately configured nodes. Fig. 3 shows a typical correlation circuit.
Events enter a circuit (visually) on the left through source nodes, flow through a user-specified interconnection of nodes,
and depart the circuit through sink nodes.

Source

Sink

Annotate

Filter

Filter

Filter Combine

Unless Table

Extract

A B C D C C

Count

Combine
C

A

B

X A

B

X

A

A

X

B

B

A B C D

A B C D

External Process

Create
Z

A

B

X

C

A

A

B

Primitive Event

Composite Event

Fig. 3. Typical correlation circuit.

Events can be distributed down multiple paths within a circuit, and separate paths can be collected together. The event
manipulation is controlled by the nodes in any given path. Events can be discarded, combined, created, and so on based
upon the node types, the configuration of the nodes, and the dynamic conditions within the correlation circuit.

The correlation circuit paradigm results in a very intuitive implementation using a visual design and debugging interface that
allows the circuit designer to see what operations depend upon each other.

Correlation Nodes
There are fifteen primitive node types, each type having a unique logical function (see sidebar: Correlation Node Types).
For example, a filter node will either forward or suppress an event depending upon its configuration. The primitive nodes
can be combined to create powerful and efficient correlation circuits, in a manner similar to RISC processors, in which
simple instructions are used to deliver powerful solutions.

Circuits begin and end with source and sink nodes, respectively. Events can be filtered conditionally or explicitly with unless

nodes and filter nodes. Event ordering can be modified with a delay node, and events can be stored for future reference with
the table node. Events stored in a table node can be extracted later with the extract node. Where information external to the
correlation engine is required, the annotate node is used. Since ECS is used to assemble and consolidate information from
multiple events, the combine, rearrange, modify, and create nodes are essential. Decisions are often based on the values
maintained by count and rate nodes. Testing for the absence of expected events is facilitated with the clock node.

Event filtering is a degenerate case of event correlation requiring only filter nodes (and source and sink nodes) to complete
the circuit. Filtering only considers discrete events.

Compound Nodes
A compound node encapsulates a subset of a correlation circuit and defines a new node type with user-defined functionality
(see Fig. 4). In the ECS Designer, a compound node can be exploded to show the contained circuit, which may contain
additional compound nodes. Compound nodes can be nested to any number of levels.

http://www.hp.com/hpj/oct96/oc96a4a.pdf

Article 4 October 1996 Hewlett-Packard Journal 4

SinkFilter

Filter

Filter

CreateCompound Node

Correlation Circuit

Source

Sink

Annotate

Combine

Unless Table

Extract

Count

Combine

External Process

Source

Source

Compound Node

Source

Fig. 4. A compound node contains a correlation circuit that defines a new node type with user-defined functionality.

An empty compound node can be placed on the ECS Designer canvas and interconnected with other nodes. The compound
node can be exploded to add the required internal circuit. Alternatively, an interconnected set of existing nodes can be
selected and converted to a compound node. This supports both top-down and bottom-up design methodologies, information
hiding, abstraction, modular design and construction, improved circuit readability, functional reusability, and component
testing.

Architecturally there is no difference between a top-level correlation circuit and a compound node. A circuit can be
considered to be a compound node and vice versa. The contents of the compound node consist of an interconnected set of
nodes including source and sink nodes. The source and sink nodes are connected to ports on the outside of the compound
node. The ports are used to connect the compound node into a higher-level circuit. At the top level, the ports are connected
to the external environment (see Fig. 5).

A compound node can be added to a library of compound nodes. A library can be selected and added to the tool bar of the
ECS Designer so that the member nodes can be selected and used just like any of the primitive nodes. A library compound
node can be copied, allowing local customization, or used by reference to the library copy. Reference use allows single-point
maintenance of the library copy.

Node Configuration
Each instance of a node must be configured to the user’s requirements. Node parameters are configured by the user to
customize the functionality of the instance. Each node has a set of ports, which can be connected to ports of other nodes,
with connections to some ports being required before the circuit will compile. The components of the count, unless, and
table nodes are described in the three sidebars: Count Node, Unless Node, and Table Node.

Parameters
All nodes are customized to specific requirements by setting the values of node parameters via the node’s configuration
dialog. Parameters are either evaluated by the engine at run time, or repeatedly whenever an event arrives at the input port
of the node. Thus, parameters are either static or dynamic.

http://www.hp.com/hpj/oct96/oc96a4b.pdf
http://www.hp.com/hpj/oct96/oc96a4c.pdf
http://www.hp.com/hpj/oct96/oc96a4d.pdf

Article 4 October 1996 Hewlett-Packard Journal 5

Source
Node

Sink
Node

Invisible Connections

Top-Level Compound Node

HP OpenView DM Postmaster

Input Port

Output Port

Port Configuration:
• Transit Delays
• Event Types

Source
Node

Sink
Node

Invisible Connections

Compound Node

Output Port

Parent Correlation Circuit

Output Port

Input Port

(a) Top-Level Circuit Port Connections

(b) Compound Node Port Connections

Fig. 5. Compound node port connections. (a) Top-level. (b) Lower-level.

1 3 4 52

21

221 222

2231 2232

22331 22332 22333

22

223

2233

221

Composite Header

Primitive or Temporary Event

Address of Element

Fig. 6. Structure of a composite event.

Static parameters typically set resource and operational limits, such as the size of a table node, the frequency with which a
clock node generates an event, how long an unless node should wait for an inhibiting event, and so on. Dynamic parameters
define the operational behavior of a node. For example, a dynamic parameter of a filter node is a Boolean condition that is
evaluated when an event enters the input port. The expression can take the incoming event as an argument, along with any
other data from throughout the circuit. The result determines whether the event is forwarded to the true output or the false
output.

All parameter values are actually expressions that can use references to values stored in the data store and to relationships
stored in the fact store (see sidebar: Fact Store and Data Store). For example, where a value should be supplied for a
parameter, the name of a variable defined in the data store can be used. The data store entries can be changed without
changing the configuration of the node. Dynamic node parameters are evaluated whenever a new event arrives at the input
port of the node. If these parameter expressions reference data store or fact store entries, updates to these stores will affect
subsequent parameter evaluations. This allows the behavior of a correlation circuit to be modified dynamically.

Like any primitive node, a compound node can have parameters that must be set or configured when the node is
instantiated. The parameters are defined and documented by the designer of the compound node.

http://www.hp.com/hpj/oct96/oc96a4e.pdf

Article 4 October 1996 Hewlett-Packard Journal 6

Ports
All nodes have one or more ports, which are visible in the ECS Designer. Nodes are interconnected via ports appropriate to
the required functionality. Depending upon type, nodes can have input ports, output ports, error ports, reset ports, and other
types of ports. Normal operations occur through the normal input and output ports. For a filter node, the configured
expression should evaluate true or false, causing the incoming event to be routed to the true output or the false output port
as appropriate.

Where run-time errors occur in evaluating the expressions configured for particular node instances (not everything can be
known before run time), an event will be output through an error output port.

Except for the combine and compound nodes, primitive nodes have a fixed number of ports. The combine node can have up
to 50 input ports (combining event streams). The compound node can have up to 50 input and output ports to support the
encapsulated functionality.

Reset Ports
Delay, unless, combine, and annotate nodes can hold events in memory associated with an input port pending some
condition becoming true. Table nodes can hold events in long-term memory.

When the engine is to be stopped or the correlation circuit is to be modified, the future conditions can now never be true,
and the applicability of stored events is indeterminate in the context of the modified circuit. Even if the circuit were to be
stopped and restarted without change, the potential for pertinent events to have been missed invalidates the state of the
correlation. Critical events that should have been output may now be discarded.

It is necessary to be able to output the stored events before engine reset or reload so that potentially critical events are not
lost. All nodes that store events have reset input and reset output ports. If an event is forwarded to a node’s reset input port,
any stored events will be output or discarded in a defined manner. The reset event will be output via the node’s reset output
port, possibly to a downstream node’s reset input port, allowing a reset circuit to be added to an operational circuit.

Public Data
The nodes of a correlation circuit typically make decisions and perform actions based upon the arriving events, the
information within the events, and the current time of the engine. Other data is also available to the dynamic node
expression parameters to control node processing, including node attributes, the data and fact stores, and annotation data.

Node Attributes. A node can export one or more data values for use by expression and condition parameters configured for
other nodes throughout the circuit. The count node exports a count attribute which increments or decrements for each
arriving event. The table node exports two attributes: a count attribute whose value is the number of events currently stored
and a contents attribute whose value is a list of all events stored in the table.

Compound nodes can export the attributes of any contained nodes as attributes of the compound node. If they are
not exported, the attributes of internal nodes are private to the compound node and will not be visible outside the compound
node.

Data and Fact Store. The data store contains entries of name-value pairs and the fact store contains entries of name-relation-
name triples (see sidebar: Fact Store and Data Store). These stores operate as in-memory databases and are accessible
globally throughout the correlation circuit.

The data store entries allow values to be referenced by name, so that particular values need not be known when the circuit is
designed. Using indirection through the data store also allows correlation circuits to be reused at multiple sites, with
specialization via appropriate data store values.

The fact store allows the relationships between objects to be tested by node parameter conditions and expressions. Typically
the entries will be used to reflect network topology information, and will allow event relationships to be determined
dynamically without building the network model information into the actual correlation circuit.

Annotation. An annotate node (see sidebar: Annotation) can be used to obtain data from outside the correlation engine for
use within the engine. This data will be used to make correlation decisions, or to add to created events or modified events.

Event Types
Several event types can logically exist within a circuit. These include primitive events, composite events, and temporary
events.

Primitive Events. A primitive event is a single event as it entered the correlation engine, possibly with data values modified
within the circuit, or an event created within the engine, suitable to be returned to the external environment. ECS currently
supports CMIP (Common Management Information Protocol, ISO/IEC 9596-1) and SNMPv1 (Simple Network Management
Protocol, version 1) event types. The engine isolates the external event type from the internal functionality using specific
decode and encode modules for each event type. This modular design allows additional event types to be supported in the

http://www.hp.com/hpj/oct96/oc96a4e.pdf
http://www.hp.com/hpj/oct96/oc96a4f.pdf

Article 4 October 1996 Hewlett-Packard Journal 7

future. Since the internal processing is not dependent upon the format of primitive events, it is possible to correlate events of
any supported type with events of any other supported type.

Composite Events. A composite event is an ECS internal mechanism that allows multiple events to be collected into a single
addressable structure in which all members are accessible (Fig. 6). The event aggregation capability is fundamentally
important for ECS. Collecting and processing multiple events as a single event allows all important information to be
collected together. Members of a composite event can be primitive, composite, or temporary events. A composite event is
only defined within a correlation engine, and cannot be output from a top-level circuit back to the environment. Composite
events can be passed into and out of compound nodes.

Temporary Events. Where an event is required as an internal container for data, or where a trigger event is required, the engine
will create a temporary event. For example, the clock node will emit a temporary event at each clock period. There is no
relevant data in this empty temporary event. It can be used to trigger correlation activity elsewhere in the circuit. Where
results are returned in response to a request by an annotate node, a temporary event is created to hold the data and returned
to the circuit as a component of a composite event. A temporary event can enter or leave a compound node, but it cannot be
output from a top-level circuit back to the environment.

Enhancing Event Information
A fundamental value proposition of ECS is that event information can be enhanced. What this means in reality is that all
available information—for example, all information relevant to some network fault condition—is consolidated from multiple
time-separated events, the data store and fact store, and data external to the engine via annotation.

When all pertinent information has been assembled (and all superfluous data discarded), it must be forwarded to interested
operations systems. This can be done by:

� Creating a new primitive event containing the consolidated information, using the create node to create the
event and copy the data into the event.

� Modifying the data values in an existing primitive event, using the modify node to change the values of the
event’s attributes before the event is output.

The input primitive events, which each contain only a fraction of the total relevant information, can be suppressed. Only the
new or modified events are forwarded to interested management entities. The result is that the events actually delivered to
management systems contain enhanced information content.

To aggregate all pertinent data into the delivered events, it is necessary to be able to collect the information together and
process it through the engine as a single data unit. This allows correlation decisions to be applied to the logical block as a
single unit, providing major efficiencies in circuit design and processing loads. Composite events are used to aggregate
events into a single unit.

Event Processing
When an event is received by the correlation engine it must be decoded from the specific format (BER encoded*) sufficiently
to determine the event creation time and the event identification. These values are fundamental to the operation of ECS. The
creation time must be known to allow the time relationships between events to be known. The event identification can be
used explicitly to control which branch of the circuit the event will logically enter.

HP OpenView ECS has been designed for high performance. Event encoding and decoding, and event copying within the
engine, are implemented using a just-in-time encode and decode mechanism and sophisticated systems of header structure
lists, event lists, pointers, and reference counts. An event is not fully decoded if not required by the correlation rule
parameter expressions. References to events pass from node to node, rather than active events or copies of events.

When an event is forwarded down multiple paths in a circuit, reference counts are incremented. Only when one of these
logical copies is modified (say with the modify node), is the event duplicated before modification. When the reference count
is decremented to zero, possibly when the event is output from the circuit, the event is removed from the event list.

Retained Events
The transit delay of an event is defined as the number of seconds between the creation time of an event and the time that the
correlation engine receives the event, assuming that both clocks are synchronized.

The example previously used considered the case in which an event A has arrived and a consequential event B is suppressed
when it subsequently arrives. The correlation must consider the permissible transit delay range for event A to cover the
situation in which event A arrives after event B. This requires that either event A or event B be retained in the circuit at the
point where the condition is being tested. In a real-time engine, in which memory resources must be conserved, the event

* BER stands for Basic Encoding Rules (ISO/IEC 8825, ITU-T X.209). The BER define how ASN.1 (Abstract Syntax Notation 1, ITU-T X.208) data types are
encoded to be transported on the network. Both of the primitive event types supported by HP OpenView ECS, that is, SNMP traps and CMIP notifications,
are encoded using BER.

Article 4 October 1996 Hewlett-Packard Journal 8

should be retained only while there is a possibility that it may be required in an active correlation, and automatically
destroyed when no longer required.

A circuit must be configured with a transit delay window, which acts as an initial filter to eliminate any events with creation
times outside this window relative to the correlation engine time. The circuit transit delay window is propagated into the
circuit to calculate the transit delay limits on all nodes whose operation depends on event time differences. If a node
imposes an additional time window for event comparisons (e.g., an unless node allows an inhibiting event to occur at some
time offset from the exciting event), the allowable transit delays for the subsequent circuit are automatically adjusted to
include the additional possible transit delay.

Events can be retained in port or node memory pending some condition becoming true. Each such event will be examined
at each engine clock cycle to ensure that the creation time relative to the engine time is within the computed transit delay
window at that point. Events failing to meet this requirement are released from memory automatically.

Data Access and GDMO MIBs
The tests and comparisons performed by the nodes must allow events to be tested for content. ECS provides high-level
access to any element of an event, and has language data types that map onto the ASN.1 data types in an event. In ECS, each
addressable component of an event is referenced as a named attribute. For example, an event may be significant if its severity
attribute has a value of critical. ECS provides a sophisticated mechanism that allows the designer to specify this test (for a
filter node) as:

input_event(”severity”) = ”critical”

This Boolean expression extracts the severity attribute of the input event, tests the value of the attribute, and evaluates as
either true or false.

The concept that an event has a series of attributes that have values that can be examined or modified is fundamental to
ECS. The attributes of an event are all the components or elements of an event that are specified by the MIB (Management
Information Base) that defines the event. The MIB is added to the underlying HP OpenView DM platform so that it can be
accessed by the correlation engine. MIBs must conform to the GDMO model (Guidelines for the Definition of Managed
Objects, ISO/IEC 10165-4, ITU-T X.722) or the HP OpenView DM platform will not accept them. Once part of the platform,
ECS accesses the components of the events using the textual names from the MIB registration tree. The MIB is described in
Article 6.

Language
Underlying the ECS Designer GUI is a complex and sophisticated language called ECDL (Event Correlation Description
Language), which supports the complete specification of the correlation circuit including all the dynamic node expressions
and conditions. ECDL includes data types, operations, and functions that allow read access to all component data in the
events as they traverse the circuit, and to all public data within the circuit. (Event attributes can be altered with the modify
node.) The ECS Designer ensures that the circuit designer does not need to understand this language in great detail. The
circuit is specified by the visual interconnection of selected nodes. Node parameters are specified wherever possible using
simple ECDL constructs and supplied library functions written using ECDL or actually built into ECDL. Advanced users are
able to create specialized reusable functions. The ECDL code produced by the ECS Designer is encrypted in source form and
compiled for downloading to the correlation engine. Direct coding using ECDL is not supported and cannot be compiled.

Building and Testing Correlation Circuits
The ECS Designer (which includes circuit design and simulate modes) is a GUI that allows the circuit designer to use
a highly productive intuitive paradigm to build a correlation circuit by interconnecting primitive and compound nodes
(see Fig. 7).

In ECS Designer build mode, nodes are selected from the tool palette, placed on the canvas, and interconnected to form the
correlation circuit. Subsets of the circuit can be encapsulated as compound nodes to improve readability, implement
top-down design rules, or promote reuse. Each node must be configured with appropriate values or expressions for its
parameters. The general flow of events is determined by the circuit layout, subject to the conditions imposed by individual
node parameters.

When the circuit is complete, the ECS Designer can be switched to simulate mode. In this mode, events can be input to the
circuit to allow visualization of the flow of events through the circuit.

Various visual techniques are used to provide circuit operation feedback to the circuit designer. Events can be input in
various modes: stepped by event or by time, free-run at selectable speed until a breakpoint, and others. The status of each
node can be examined at any time. For instance, the contents of table nodes can be examined, the number of events through
various ports can be checked, and so on.

In the simulate mode, events are input to the circuit from an input event log. The circuit designer can view both the input
events and the correlated output events by means of associated event browsers.

http://www.hp.com/hpj/oct96/oc96a6.htm

Article 4 October 1996 Hewlett-Packard Journal 9

Fig. 7. Constructing a correlation circuit using the ECS Designer GUI.

The simulation is performed using a fully functional correlation engine, except that the engine does not free-run.
The engine’s notion of time is under the control of the simulator.

When a circuit has been developed and tested, the ECS Designer is used to compile the circuit so that it can be down-loaded
into correlation engines, possibly in remote locations.

The event log that is input to the ECS simulator is in a structured ASCII format, allowing the events to be manually created
or edited. It is desirable to use a log of real events, and to collect them automatically. Support is provided to collect real
events in the required format. It may be necessary to make some simple edits to this event log to simulate the possible
worst-case transit delays.

HP OpenView DM Interfacing
The correlation engine is integrated with the HP OpenView Distributed Management (DM) postmaster, ensuring that
correlation is applied at a common point so that all events can be subjected to correlation (see Figs. 2 and 8). A correlation
engine can be installed wherever an HP OpenView DM platform is installed. The distributed nature of HP OpenView DM
event management services allows a distributed hierarchy of correlation engines to be readily implemented.

Adding correlation engines to the HP OpenView DM postmasters is transparent to existing agent and manager entities
communicating via the postmasters, except that events can now be correlated. If the loaded correlation circuit were to pass
all events, there would be no observable difference in the operation of these entities, or in the events being generated and
received.

The HP OpenView DM platform is described in Article 1.

Events entering the postmaster are routed to the correlation engine where they may be accepted into the engine depending
upon the configuration of the circuit input ports (see Fig. 8). Confirmed CMIP events are immediately returned to the
postmaster by the correlation engine. It is normally expected that a management entity will receive a confirmed event, and
that the confirmation is returned as a consequence of some action having been taken, frequently by an operator. Typically,
if the confirmation is not returned, the agent entity that generated the event will issue another (possibly different) event. The
operation of the agent entity may be effected by the absence of the confirmation. If confirmed events were accepted into the
correlation engine where they were subsequently suppressed as part of the correlation, the confirmation would not be

http://www.hp.com/hpj/oct96/oc96a1.htm

Article 4 October 1996 Hewlett-Packard Journal 10

A B

C

DE

F

HP OpenView
DM Postmaster

(pmd)
Event

Correlation
Services

SMF Log

CMIP
Stack

SNMP
Stack

XMP Interface

SMF Log

SMF Log

Events

E

F

C

A

B

D
OPI

Unconfirmed CMIP events are routed to ECS.

All SNMP traps are routed to ECS.

Correlated events (CMIP and SNMP) routed to logs by pmd.

Logged events routed to XMP by pmd.

Confirmed CMIP events do not enter ECS (could be logged).

Correlated events (CMIP and SNMP) routed to XMP by pmd.

SMF

XMP

OPI

= System Management
Functions

= X/Open Management
Protocol (Application
Programming Interface)

= HP OpenView DM Open
Protocol Interface

Network Management Applications

Fig. 8. Event routing to and from HP OpenView Event Correlation Services.

returned since the normal receiving entities would never see the event. Conversely, if the correlation engine generates the
confirmation, the agent entity can modify its function based upon the assumption that an operator has seen the event and
taken appropriate action.

The input ports of the correlation engine must be configured to accept all events received or they will be filtered out and
discarded by the engine. Where significant events are expected for which correlation has not been designed into the circuit,
a branch of the circuit can be arranged as a pass-through to transmit all events not explicitly handled by the other circuit
branches.

Acknowledgments
I would like to thank Keith Harrison and Michele Campriani of HP Laboratories, Bristol for developing the theory upon
which this technology is based, and for their encouragement and assistance in bringing the technology to market.

Reference
1. K.A.Harrison, A Novel Approach to Event Correlation, HPL-94-68, HP Laboratories, Bristol, England, July 1994.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a4a.pdf
http://www.hp.com/hpj/oct96/oc96a5.htm

Sidebar: Correlation Node Types October 1996 Hewlett-Packard Journal 1

Correlation Node Types

Fifteen primitive node types are supplied with HP OpenView Event Correlation Services (ECS). Every correlation circuit must have one or
more source nodes and one or more sink nodes.

Source Nodes. This is where events enter a correlation circuit. There can be more than one source node in a circuit. For a top-level
circuit, source nodes are connected to the engine’s input ports, where events are delivered by the HP OpenView DM postmaster.

Sink Nodes. This is where events leave a correlation circuit. For a top-level circuit, the events are returned to the HP OpenView DM
postmaster for delivery to management entities that have registered to receive them.

It is necessary to be able to suppress unwanted events. In the circuit paradigm, events are filtered by preventing them from flowing
through different paths in the circuit. This is done by filter nodes and unless nodes.

Filter Nodes. These suppress events based upon a configured expression which typically uses the incoming event as an argument.

Unless Nodes. These forward an event unless another event was created within a configured (positive or negative) time period relative
to the creation time of the first event, and the configured (filtering) expression evaluates false.

Events can be delayed in the management network, especially when the network is stressed. This may result in delayed events and
events arriving in a different order than the order in which they were created. Delay nodes can be used when correlation decisions
depend upon events being processed in the strict event creation time order.

Delay Nodes. These hold an event until the creation time is a configured number of seconds before the current time. This has the effect
of guaranteeing that the events are output from this node in creation time order.

Events may need to be stored for extended periods so that future correlation decisions can be made using the event history.
Subsequently, it may be necessary to extract complete copies of events from the storage.

Table Nodes. These hold a logical copy of all events sent to the table, subject to configured retention parameters and conditions. Other
nodes can examine the event list, stored in creation time order, and make processing decisions based upon the contents.

Extract Nodes. These search a table node and extract a copy of one or more events from the stored list, subject to a configured
condition. The search is triggered by an event arriving at the input port of the extract node, and the extracted events are output as a
composite event (see Event Types).

While most of the useful information will come from the event stream, data may need to be obtained from outside the correlation engine.

Annotate Nodes. These obtain data external to the engine and add it to an output composite event. The external data is now available in
the event for subsequent use in the downstream circuit. The annotate request provides time for the request to be serviced, after which it
will time out. Other events continue to be processed during this period.

One of the fundamental features of ECS is the ability to collect and consolidate discrete pieces of data from the event stream and from
outside the engine to produce value-added information. Events need to be manipulated, including combining events into a single data
unit, changing the structure of this unit, changing event data values, and creating new events.

Combine Nodes. At these nodes, two or more input event streams are combined into a single output stream, with each output event
being a composite event containing an event from each input stream. Events on one stream can be held until events on other streams
arrive.

Rearrange Nodes. These change the structure of a composite event, including pulling a single normal event out of a composite.

Modify Nodes. These change attribute values of incoming events to any values required. The values can be copied or calculated from
any publicly available data. A copy of the original event is made, and the event copy is modified and output. The original event is not
modified.

Create Nodes. These create a new event with a format controlled by a configured specification and attribute values set according to a
configured specification. Event creation is triggered by an event arriving at the input port. The event’s attribute values can be set from
any publicly available data throughout the engine, including from the incoming event.

Some basic utility functions are provided by the following nodes.

Count Nodes. These count the events passing through the node.

Clock Nodes. These generate an empty event every configured time interval. This allows circuit logic to be triggered in the absence of
any incoming events, enabling the absence of required events to be detected.

Rate Nodes. These calculate the rate at which events are passing through the node.

http://www.hp.com/hpj/oct96/oc96a4.pdf

Sidebar: Correlation Node Types October 1996 Hewlett-Packard Journal 2

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a4.pdf
http://www.hp.com/hpj/oct96/oc96a4b.pdf

Sidebar: Count Node October 1996 Hewlett-Packard Journal 1

Count Node

The count node (Fig. 1) is an example of a simple node. It has a single parameter, initial count, which sets the initial value of the count
attribute. An event entering the increment input port increments the count attribute and is immediately output via the increment output
port. An event entering the decrement input port decrements the count attribute and is immediately output via the decrement output
port. An event entering the reset input port resets the count attribute to the initial count value and immediately exits via the reset output
port. At least an increment input port or a decrement input port must be configured or the compiler will generate an error. All output port
connections are optional, and events routed to unconnected ports are discarded. The default value for initial count is zero. The count
attribute is exported as a read-only attribute, which can be referenced in node parameters and expressions as <countnodename>.count.
If both the increment input and decrement input ports are connected, the count attribute will indicate the difference in the number of
events entering these ports.

Environment

Decrement
Input

Decrement Output

Re
se

t

Initial Count Count

Increment
Input

Reset Input

Increment Output

Reset Output

Count Node

Name

Name

Environment
Mandatory Connection
(at least one)

Optional Connection
(else discard event)

Data Store, Fact Store,
Node Attributes

Node Parameter
(Configured)

Node Attribute
(Exported)

Fig. 1. Count node.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a4.pdf
http://www.hp.com/hpj/oct96/oc96a4c.pdf

Sidebar: Unless Node October 1996 Hewlett-Packard Journal 1

Unless Node

The unless node (Fig. 1) is an example of a complex node. The unless node will transmit an event arriving at the input port (the exciting
event) to the output port, provided that no event arrives at the inhibitor input port (the inhibiting event) which satisfies the criteria
specified by the window parameter and the condition parameter. These events can arrive at different times; either order is supported.
The transit delays of arriving events must be within the window parameter limits to be accepted by the relevant port. If an accepted
inhibiting event arrives and there is an accepted exciting event in memory, the condition parameter is evaluated. If an accepted
inhibiting event arrives and there is no exciting event in memory, the inhibiting event will be held pending the arrival of an accepted
exciting event, at which time the condition parameter will be evaluated. The condition parameter is a Boolean expression that can take
both the exciting event and the inhibiting event as arguments. For example,

condition: input_event(”device”) = inhibitor_event(”device”)

will evaluate true if both events were generated by the same device (assuming this information is contained in the events). Any
environment data (data store, fact store, and node attributes) can also be used in the condition expression. If the condition evaluates
false, the exciting event is output via the output port. If the condition evaluates true, the exciting event is inhibited and is output via the
inhibited output port if one is connected, or discarded if not. If the evaluation of the condition causes an error (e.g., if a referenced event
attribute does not exist), the exciting event will be combined with the inhibiting event and output via the error output port as a composite
event. If the error output port is not connected, the composite event will be logged. If the transit delay of the exciting event does not
satisfy the window parameter transit delay window, the event is output via the fail output port. If the inhibiting event fails this test, it is
silently discarded. The inhibiting event is never output except as a composite event as described above.

An event arriving at the reset input port causes any events held in the memory of the input (exciting) port to be output immediately via
the fail output port, and any events held in the inhibitor input port memory to be silently discarded. The reset event is immediately output
via the reset output port.

Inhibitor
Input

Inhibited Output

Environment

ÏÏ
ÏÏ

Time Window

Input Event

Inhibitor Event

False

True

Error

Parameters

Unless Node

Input

Reset
Input

A

B

A

A

A B

Reset

Reset

Output

Error Output

Fail Output

Reset Output

Detained Events

Mandatory Connection

Optional Connection (else discard event)

Optional Connection (else log event)

False

True

Error

Environment

Condition Evaluated False

Condition Evaluated True

Condition Evaluated Error

Data Store, Fact Store, Note Attributes

?

Node
Logic

Condition

Window

ÏÏ
ÏÏ Fig. 1. Unless node.

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/oct96/oc96a4d.pdf
http://www.hp.com/hpj/oct96/oc96a4.pdf

Sidebar: Table Node October 1996 Hewlett-Packard Journal 1

Table Node

The table node (Fig. 1) is the only example of a special (and complex) node. The table node stores events for extended periods. The
number of stored events is exported as the count attribute. All events stored in the table node are exported as a list of events in the
contents attribute. The events in the contents attribute can be examined by expression and condition parameters of other nodes in the
circuit, and extracted by the extract node. The table node stores a single list of events (the contents) in two logical areas. The current
area is controlled by the save until and max events parameters, and the retained area is controlled by the retain condition and delete
condition parameters. The two areas have different mechanisms for storage. The current area is based on physical and event age limits,
while the retained area is based on evaluated conditions, which typically test data values within the events.

Error Output

Reset
Input

Environment

Save Until

Max Events

Delete Condition

Retain Condition
Contents

Contents

Retained
Area

(Events)

Current
Area

(Events)

Discard

Too Old?

Table Node

Yes

No

ÏÏ

Input Output

Reset Output

Mandatory Connection

Optional Connection
(else discard event)

Optional Connection
(else log event)

Name

Name

Environment

Node Parameter
(Configured)

Node Attribute
(Exported)

Data Store, Fact Store,
Node Attributes

Fig. 1. Table node.

The current area stores each event until the creation time of the event is more than save until seconds before the current time of the
correlation engine, or until the number of events in the region exceeds max events. Each event arriving at the input port is tested to see
if the creation time of the event is less than save until seconds before the correlation engine’s current time. If it is, the event is added to
the current area (subject to the max events limit), and immediately output via the output port if connected, or discarded if the port is not
connected. If the creation time of the event is more than save until seconds before the correlation engine’s current time, the event is not
added to the table, and is either output via the error output port if connected, or logged if the port is not connected.

When an event is to be retired from the current area (based on age or volume), the condition specified in the retain condition parameter
is evaluated. This is a Boolean expression that can take the retiring event as an argument and can access any environment data from
throughout the circuit. If the expression evaluates true, the retiring event is logically moved to the retained area. If the condition
evaluates false, the event is discarded. Events are retained in the retained area until they meet the condition specified in the delete
condition parameter. The condition is tested for all events in the retained area whenever an event arrives, or at each correlation engine
clock cycle. Any event for which the condition evaluates true is silently discarded.

An event entering the reset input port causes all stored events to be silently discarded and the count attribute to be set to zero.
The reset event is immediately output via the reset output port.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a4e.pdf
http://www.hp.com/hpj/oct96/oc96a4.pdf

Sidebar: Fact Store and Data Store October 1996 Hewlett-Packard Journal 1

Fact Store and Data Store

The data store and fact store permit business, topology, and operating factors specific to a device or a set of circumstances in a
managed network to be separated from the general correlation rules defined by the correlation circuit. The behavior of the correlation
circuit can be changed by updating the data and fact stores as local conditions change without affecting the integrity of the correlation
circuit. This makes it possible to develop correlation circuits that are data-driven, promoting circuit reusability and reliability and design
generality.

The data store contains a set of name-value pairs. Any user-defined names can be used to identify the assigned values. In a circuit, the
value can be referenced using the configured name. If the reference is by a static node parameter, the reference will be resolved at
circuit load time. For dynamic parameters, references are resolved every time an event triggers activity at the node.

The fact store contains triples: thing1-relation-thing2. A relationship can be any user-defined concept, such as is_contained_in,
is_the_parent_of, is_equal_to, is_gzumped_by, and so on. The related things can also be anything the user requires in the circuit, such
as switch1, rack17, cabinet10, circuitABC, and so on. This means that a fact such as equipment10 is_contained_in rack27 can be
defined. In a circuit node, a condition parameter can test whether this relationship is true and take appropriate action if it is.

The fact and data stores are loaded from files into memory. This model conforms with the notion that the run-time engine is designed for
very high speed—faster than normal file I/O speeds. The stores can be updated while the correlation engine is running, resulting in
dynamic changes to the correlation rules.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a4f.pdf
http://www.hp.com/hpj/oct96/oc96a4.pdf

Sidebar: Annotation October 1996 Hewlett-Packard Journal 1

Annotation

The annotate node (Fig. 1) is special because it is the only node other than the source and sink nodes that interacts with the external
environment. It is necessary to create an external annotate server to service the annotation requests. When an event arrives at an
annotate node, it causes the engine to generate a CMIP event (an EcsAnnotateRequest notification) which is transmitted to the annotate
server via the HP OpenView DM postmaster (pmd) and the XMP (X/Open Management Protocol) application programming interface.
The server must have registered with HP OpenView DM to receive the annotate request event. Any data from the incoming event, or
from elsewhere in the circuit, can be output with the request. This data is used to parameterize the request. The annotate server must
perform some user-implemented action or inquiry to obtain the information required by the request. The server will return the obtained
data to the requesting annotate node with another CMIP event (an EcsAnnotateResponse notification) issued by the server (acting as an
agent entity). The response must be returned within a configured time limit or the request will time out. Any required data can be
returned (subject to the limits of the protocol). All ECS data types are supported (string, integer, real, time, duration, Boolean, list, tuple,
etc.), including any combination of these types. The data in both the request and the response is specified as a list. Since all requests
use the same CMIP event, it is necessary for the designer of the annotate server to specify some mechanism to differentiate between
requests. The response event will include the requesting node name and request ID provided in the request event. These are used to
route the response to the requesting annotate node.

The end user must create the annotate server. Examples of the server’s agent and manager functions are provided as source code along
with guidelines.

XMP API

Annotate Server
(User Supplied)

EcsAnnotationRequest EcsAnnotationResponse

External
Data

Nodename
RequestId
Timeout
Output Data

Nodename
RequestID
Response Data

Correlation Engine

Input Event

Composite Event

Temporary Event
with Each Returned
Data Item as an
Attribute

Configuration:

Timeout
Output Data List

CMIP
Stack

SNMP
Stack

Events

OPI

Source Sink
Annotate

Node

Correlation CircuitHP OpenView
DM Postmaster

(pmd)

Fig. 1. The annotate mechanism.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a4.pdf
http://www.hp.com/hpj/oct96/oc96a5.htm

Article 5 October 1996 Hewlett-Packard Journal 1

A Modeling Toolset for the Analysis and

Design of OSI Network Management

Objects

To deal with the complexity of network management standards
and the increasing demand to deploy network management
applications quickly, analysts and designers need a set of tools
to help them quickly and easily model, define, and develop new
network management objects.

by Jacqueline A. Bray

The HP GDMO (Guidelines for the Definition of Managed Objects) Modeling Toolset (GMT) is the first tool in the HP
OpenView TMN (Telecommunications Management Network) developer tool chain (Fig. 1). This toolset consists of a set of
integrated tools designed to aid developers in the analysis and design of OSI network object models. The key components of
the toolset are a graphical modeling tool, import and export facilities, and a conformance report generator. The tools operate
independently of other HP OpenView products so that network specifiers can work independently of implementers. This
article provides an overview of the network modeling process, GDMO, and the modeling tools.

HP OpenView GDMO
Modeling Tooset

GDMO
Specification File

HP OpenView
Managed Object

Toolkit (MOT)

HP OpenView
Distributed Management

Developer’s Kit

HP OpenView
Distributed Management

Platform

HP OpenView
Distributed Management

Platform

MOT-Based
Manager

MOT-Generated
Agent

Fig. 1. HP OpenView TMN developer tool chain.

Agent
Tester
Toolkit

The Modeling Process
The first step in developing a network object model is the analysis of the environment to be managed. The network and
system resources to be managed are identified and their characteristics and the operations that can be performed upon them
are defined. The managed resources might be physical (e.g., a router or workstation) or logical (e.g., a software process).
A managed resource might also represent a collection of different resources. Other elements might be managed that are
not actually resources but are required to support management functions, such as an event log. These requirements are
translated into a GDMO object model, with the managed resources represented as managed objects. The managed objects
define the interface to a managed resource.

Article 5 October 1996 Hewlett-Packard Journal 2

GDMO
The Guidelines for the Definition of Managed Objects is an ISO standard (ISO/IEC 10165-4 (ITU X.722))1 that defines how
network objects and their behavior are to be specified, including the syntax and semantics. This specification language
allows network object designers and manager/agent implementers to communicate designs and build upon existing designs.
GDMO is an object-oriented environment, using the concepts of inheritance, containment, and encapsulation. It is used to
define:

� Managed object classes for managed resources

� Attributes and behaviors of a managed object

� Operations that can be performed on an attribute or object

� Notifications (events) an object might issue

� Relationships with other managed objects

� The names of object instances.

GDMO is organized into templates, which are standard formats used in the definition of a particular aspect of the object,
with rules for how these templates refer to each other. A complete object definition is a combination of interrelated
templates. There are nine of these templates.

� Managed object class templates define a model for managed object instances that share the same characteristics.
The inheritance relationships with other managed object classes are specified, along with the packages that
define the class characteristics.

� Package templates are groups of logically related sets of behaviors, attributes, attribute groups, actions,
notifications, and parameters. With each attribute is a property list of valid operations (Get, Replace, Add, and
Remove), initial values, and other value characteristics.

� Behavior templates describe, in textual form, the behavior of a component.

� Attribute templates define an actual data element of an object, including its syntax and behavior.

� Attribute group templates define a set of attributes to allow operations to be performed on the group as a
whole.

� Action templates define additional operations for a managed object that cannot be modeled using the standard
operations defined in the package template.

� Notification templates define unsolicited events that may be sent by the agent.

� Parameter templates define error conditions specific to the object and extend the definition of information
used by actions and notifications. The context within which this parameter can be used is specified.

� Name binding templates define where an object may be located in the global containment tree, along with the
attribute used to distinguish object instances. These templates also specify rules for the creation and deletion
of the object instances.

An example of each of these templates can be found in Appendix A, which shows a portion of a GDMO definition for a
UNIX password file (i.e., /etc/passwd). The details of the information to be exchanged between the manager and agent are
defined using ASN.1 (Abstract Syntax Notation One).2 ASN.1 is a formal description language used to define data types to be
exchanged between systems. It includes primitive data types, such as integer and Boolean, and allows new data types to be
constructed from these types. The data types are grouped into one or more ASN.1 modules within a GDMO definition. In the
example in Appendix A, there is one ASN.1 module named PasswordFileInfo. The GDMO templates reference ASN.1 data types
by prefixing the data type with the ASN.1 module name (e.g., PasswordFileInfo.LoginNameSyntax in the loginName attribute
template).

Other ISO standards also relate to the definition of management object models. For example, The Management Information
Model3 is a companion document that defines modeling concepts, principles of naming and relationships, and scoping and
filtering. Another example is the standard for the Definition of Management Information.4 This standard defines, in GDMO
and ASN.1, a set of managed object classes to be used as superclasses. It includes an object class named top, from which
every other managed object class ultimately derives. The other classes form an inheritance hierarchy, with top as the root.
The object class top includes attributes for object instance naming, which the other classes inherit. The set of rules for
defining managed objects is referred to as the Structure of Management Information.

The Toolset
The GDMO modeling toolset stores the GDMO and ASN.1 definitions in an object dictionary, which acts as a central
repository for all the tools (see Fig. 2). The toolset allows concurrent access to the tools and object dictionary and can be
configured as a client/server architecture. GDMO and ASN.1 definitions are organized within documents. An import facility
allows external standard and user-defined GDMO document files, such as ITU-T X.721, to be loaded into the object
dictionary. (X.721 and other GDMO standards are included with the toolset.) New object classes can inherit from any object
class in the object dictionary and reference other templates and data types for consistency and reuse of specifications.
Within the toolset, each document has a short alias name to simplify references to documents. Object definitions can be
added to new or existing documents.

http://www.hp.com/hpj/oct96/oc96a5a.pdf

Article 5 October 1996 Hewlett-Packard Journal 3

Document
Manager

GDMO
Editor/Browser

GDMO
Semantic
Checker

Conformance
Report

Generator

Object
Dictionary

GDMO
Import
Tool

GDMO
Export

Tool

GDMO
Specification File

Fig. 2. The GDMO modeling toolset.

Graphical Modeling Tool

The graphical modeling tool can be used to learn the syntax of the GDMO language, to explore existing GDMO documents,
and to create new ones. A template window exists for each of the nine GDMO template types. These windows show the
details of an existing template or guide users in creating new templates. For example, Fig. 3 shows the template for a
managed object class, with the GDMO keywords along the left (requiring no entry) and the specific entries for this managed
object class entered in the table. Clicking the name of one of the referenced templates, such as the Characterized By Package
template, and clicking on the Details button, displays the window for that particular template. The Package template window
displays entries for several template types, including Attributes. Clicking on Details for an attribute in that window would
display its Attribute template. In this way, successively more detailed information can be viewed until the lowest level, the
ASN.1 definition, is reached.

Fig. 3. The window for a Managed Object Class template.

Browsers for each of the template types can be invoked to display a list of all available entries of that type. A filter function
is available in the browsers to display subsets of the complete list. Template entry names can be copied into another
template window without retyping the name by selecting an entry with the mouse and then clicking the Insert button in the

Article 5 October 1996 Hewlett-Packard Journal 4

appropriate template. The Details button described above also functions in the same way while in the browser windows. This
detailed drill-down capability is available throughout the tool.

Two useful features for cross-reference checking the object model are the Viewpoint and Inherited Characteristics options. Clicking
the Viewpoint button, available on all template and Viewpoint windows, displays the viewpoint for a selected item. In the
Viewpoint of Managed Object Class window in Fig. 4, the selected object is represented by the vertical bar, the templates on the left
reference the selected object, and the templates on the right are referenced by the selected object. The boxes on either side
of the vertical bar contain the appropriate GDMO keywords. Above each template name is the template type (e.g., MOC
(managed object class), PKG (package), etc.). The Viewpoint window is helpful when making changes to an object to verify that
those changes will not adversely affect other objects that are dependent upon it.

Fig. 4. A GDMO tool for cross-reference checking: the Viewpoint of Managed Object Class window.

Clicking Views and then the Inherited Characteristics button, available only on managed object class template windows, displays
the window shown in Fig. 5. The characteristics available to a managed object class, whether specialized in that object class
definition or inherited from an ancestor, can be displayed by selecting the characteristics of interest (Attributes, Notifications,
etc.) from the row of buttons under Characteristics to Display and then clicking Compute. The scrolled window lists all of the
inherited characteristics available and where they were referenced. Clicking on a characteristic and then the Details button
displays its template.

The graphs available in the GDMO toolset represent three distinct and independent tree structures used in OSI system
management. These graphs are the inheritance graph, the registration graph, and the name binding graph. The inheritance
graph (Fig. 6) shows the inheritance hierarchy of all the managed object classes in a selected GDMO document, along with
any superclasses derived from other documents. (All of the tool windows handle referencing across documents. When a
template is referenced from another document, the template is prefaced with the document alias.) Object class nodes can
also be added or deleted on this graph. GDMO and the GDMO toolset both support multiple inheritance, which allows
classes to inherit properties from more than one superclass.

The registration graph (Fig. 7) shows part of the registration tree of object identifiers defined in ITU-T Recommendation
X.721.4 An object identifier is a unique ASN.1 data type that is a sequence of nonnegative integers representing a particular
object. GDMO describes the registration tree structure adopted in the OSI system management standards for allocating
globally unique identifiers to components of managed object definitions.5 Objects can be registered via the registration
browser or the registration tree. Registration is typically done in the last phase of GDMO modeling, when document
definitions are stable.

The name binding graph (Fig. 8) displays the containment relationships defined via the name binding template. The name
binding template specifies a subordinate (contained) object and a superior (containing) object, along with an attribute of
the subordinate object that will be used to name instances of that class. The name binding template also specifies whether
object instances can be created and deleted via remote management, along with any limitations on those actions. For
example, it may specify that an object instance can be deleted via remote management, but only if that object instance does
not contain other objects. This containment hierarchy represents the structure of the Management Information Base (MIB).
It shows the objects an agent contains and the hierarchy and containment of those objects, which are used not only to define
the MIB structure but also as a means of unambiguously referencing object instances.6

Article 5 October 1996 Hewlett-Packard Journal 5

Fig. 5. A GDMO tool for cross-reference checking: the Inherited Characteristics window.

Fig. 6. A managed object tree structure in a Managed Object Class Inheritance Graph window.

Article 5 October 1996 Hewlett-Packard Journal 6

Fig. 7. A registration tree graph.

Fig. 8. A name binding graph.

Article 5 October 1996 Hewlett-Packard Journal 7

Once the GDMO document is complete, the semantic checker verifies that the specifications are complete and correct. It
checks references throughout the object dictionary, including the detection of templates that are defined but unreferenced.
The document can then be exported to an ASCII file for subsequent use by code generators, such as the HP OpenView
Managed Object Toolkit and other tools. The ASCII file contains both the GDMO definitions and ASN.1 modules. The
Managed Object Toolkit is described in Article 6.

The remaining tool, the conformance report generator, generates printed reports that conform to the ISO standard:
Requirements and Guidelines for Implementation Conformance Statement Proformas Associated with Management

Information (ISO/IEC 10165-6 (ITU–T X.724). Fig. 9 is an example of a proforma. The designer annotates the components
in the report with any additional information that will be needed by the agent developer implementing the components.
The agent writer will indicate in the proforma report the level of conformance to the definitions.

Fig. 9. An example of a proforma, which is the output from the GDMO developer toolkit’s conformance report generator.

Conclusion
Developing a network object model and the associated GDMO specifications is a complex process. The GDMO Modeling
Toolset aims to reduce the complexity and time involved in this definition by providing intuitive graphical tools and object
model verification.

Acknowledgments
The author would like to acknowledge the contributions of many individuals who participated in the development and
deployment of the GDMO toolset, including Paul Stoecker and Mark Smith for their technical contributions.

References
1. Guidelines for the Definition of Managed Objects, ITU-T Recommendation X.722, 1992.
2. Specifications of Abstract Syntax Notation One (ASN.1), ITU-T Recommendation X.208, 1993.
3. Management Information Model, ITU-T Recommendation X.720, 1993.
4. Definition of Management Information, ITU-T Recommendation X.721, 1992.
5. J. Westgate, Technical Guide for OSI Management, NCC Blackwell Limited, 1992.
6. W. Stallings, SNMP, SNMPv2, and CMIP, The Practical Guide to Network-Management Standards,

Addison-Wesley Publishing Co, 1993.

http://www.hp.com/hpj/oct96/oc96a6.htm

Article 5 October 1996 Hewlett-Packard Journal 8

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a5a.pdf
http://www.hp.com/hpj/oct96/oc96a6.htm

Sidebar: Appendix A October 1996 Hewlett-Packard Journal 1

Appendix A: A Portion of a GDMO

Definition for a UNIX Password File

passwordEntryManagedObjectClass MANAGED OBJECT CLASS
 DERIVED FROM
 ”Rec. X.721 | ISO/IEC 10165–2 : 1992”:top;
 CHARACTERIZED BY
 passwordEntryPackage;
REGISTERED AS { passwordMOCObjID 1 } ;

passwordEntryPackage PACKAGE
 BEHAVIOUR passwordEntryPackageBehav;
 ATTRIBUTES
 loginName
 GET,
 password
 INITIAL VALUE PasswordFileInfo.passwordInitVal
 GET–REPLACE,
 ...
 ATTRIBUTE GROUPS
 passwordEntry;
 NOTIFICATIONS
 passwordEntryWasCreated,
 passwordEntryWasDeleted;
REGISTERED AS { passwordPkgObjID 1 } ;

passwordEntryPackageBehav BEHAVIOUR
 DEFINED AS ”This is a simple agent/manager designed to
 manipulate entries in a UNIX password file, /etc/passwd. ...”;

loginName ATTRIBUTE
 WITH ATTRIBUTE SYNTAX PasswordFileInfo.LoginNameSyntax;
 MATCHES FOR EQUALITY;
 BEHAVIOUR loginNameBehav;
 PARAMETERS loginNameErrorParam;
REGISTERED AS { passwordAttrObjID 1 } ;

passwordEntry ATTRIBUTE GROUP
 GROUP ELEMENTS
 loginName,
 password,
 ...
 DESCRIPTION ”This is the mechanism whereby an entire password
 entry will be referenced in a single call.”;
REGISTERED AS { passwordAttrGroupObjID 1 } ;

readObjectsFromDisk ACTION
 BEHAVIOUR readObjectsBehav;
 PARAMETERS readObjectsErrorParam;
 WITH INFORMATION SYNTAX PasswordFileInfo.FileNameSyntax;
 WITH REPLY SYNTAX PasswordFileInfo.SuccessSyntax;
REGISTERED AS { passwordActionObjID 1 } ;

passwordEntryWasCreated NOTIFICATION
 BEHAVIOUR passwordWasCreatedBehav;
 WITH INFORMATION SYNTAX PasswordFileInfo.LoginNameSyntax;
REGISTERED AS { passwordNotifyObjID 1 } ;

loginNameErrorParam PARAMETER
 CONTEXT SPECIFIC–ERROR;
 WITH SYNTAX PasswordFileInfo.LoginNameError;
 BEHAVIOUR loginNameErrorBehav;
REGISTERED AS { passwordParamObjID 1 } ;

passwordEntryNameBinding NAME BINDING
 SUBORDINATE OBJECT CLASS passwordEntryManagedObjectClass;
 NAMED BY SUPERIOR OBJECT CLASS passwordRootManagedObjectClass;
 WITH ATTRIBUTE loginName;

Sidebar: Appendix A October 1996 Hewlett-Packard Journal 2

 BEHAVIOUR passwordEntryNameBindingBehav;
 CREATE WITH–REFERENCE–OBJECT;
 DELETE DELETES–CONTAINED–OBJECTS;

REGISTERED AS { passwordNameBindObjID 1 } ;
...
–– ASN.1 Definitions

PasswordFileInfo { 1 3 6 1 4 1 11 1001 1 1 }
DEFINITIONS ::= BEGIN

maxNameLength INTEGER ::= 8
LoginNameSyntax ::= GeneralString (SIZE(maxNameLength))
...
passwordBaseObjID OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 11 1001 }
passwordAttrObjID OBJECT IDENTIFIER ::= { passwordBaseObjID 2 }
...
passwordMOCObjID OBJECT IDENTIFIER ::= { passwordBaseObjID 8 }
...
END

–– The passwd example is provided with various HP OpenView TMN products.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a5.htm
http://www.hp.com/hpj/oct96/oc96a6.htm

Article 6 October 1996 Hewlett-Packard Journal 1

A Toolkit for Developing TMN

Manager/Agent Applications

Developing manager and agent applications for telecommunications
network management that conform to standards can be a time-
consuming task because of the number of APIs and data types
involved in dealing with network data and protocols. The HP
OpenView Managed Object Toolkit aids and accelerates the
development of these TMN applications.

by Lisa A. Speaker

Telecommunications Management Network (TMN) application developers have to implement large, complex solutions
to manage today’s heterogeneous and distributed telecommunication networks. Telecommunication service providers
(carriers) rely on interoperability standards to integrate and deploy these solutions in a heterogeneous environment.
Developing these solutions to conform to standards is a time-consuming task.

This article will provide an overview of the challenges involved in developing OSI-based TMN applications and then will
describe the HP OpenView Managed Object Toolkit, which can be used to accelerate the development of TMN applications.

Background
Network equipment providers and network service providers historically have developed their own proprietary solutions for
managing their telephone network equipment. Today, however, network equipment may come from different providers, and
telecommunication network operators manage large, heterogeneous, and distributed networks. Thus, the main objective for
standards being developed for managing telecommunications networks is to provide a framework for telecommunications
management that promotes interoperability. By introducing the concept of generic network models for management, it is
possible to perform general management of diverse equipment using generic information models and standard interfaces.

In 1977, the International Organization for Standardization (ISO) recognized the necessity for standards to enable the
widespread use of communications networks and, as a result, established a subcommittee to initiate the standardization
process. Because of the complexity of the environment, they concluded that no single standard would be sufficient. Rather,
they decided that the communication functions should be partitioned into more manageable components and organized as a
communications architecture. This architecture would then form the framework for standardization.1

The essential elements of the model were developed quickly, but the final ISO standard (ISO 7498) was not published until
1984. The International Telegraph and Telephone Consultative Committee (CCITT) issued a technically compatible version
as X.200. The result is a massive set of standards referred to as OSI (Open Systems Interconnect) systems management.
The ISO standards and the CCITT* recommendations continue to be developed with close collaboration.

The term OSI systems management actually refers to a collection of standards for network management that include a
management service and protocol and the definition of a database and associated concepts. The first standard related to
network management issued by the ISO was ISO 7498-4, which specifies the management framework for the OSI seven-layer
model. Subsequently, the ISO issued a set of standards and draft standards for network management. A subset of these
standards provides the foundation for TMN applications.

The TMN recommendations strive to leverage the OSI systems management standards and extend them into the
telecommunications network management domain. As in OSI, the basic concept behind TMN is to provide an organized
architecture and standardized interfaces, including protocols and messages, to achieve interconnection between various
types of operations systems (OSs) and telecommunications equipment for the purpose of exchanging management
information.

The OSI systems management standards fall into five categories:

� An OSI management framework and overview, which provides a general introduction to management
concepts, including the OSI seven-layer model

� The Common Management Information Service (CMIS), which provides OSI management services to
management applications, and the Common Management Information Protocol (CMIP), which provides the
information exchange capability to support CMIS

* The CCITT recommendations are now called ITU-T (International Telecommunications Union-Telecommunications) recommendations.

Article 6 October 1996 Hewlett-Packard Journal 2

� Systems management functions, which define the specific functions performed by OSI systems management,
including fault, configuration, accounting, performance, and security management

� A management information model, which defines the Management Information Base (MIB), a database
containing information about the resources and elements within the OSI environment that need to be managed

� Layer management, which defines management information, services, and functions related to specific OSI
layers.

The fundamental function within OSI systems management is the exchange of management information between two
entities: the managing system (the manager or requestor) and the managed system (the agent or responder) by means of a
protocol (see Fig. 1). CMIS provides the services, invokable by the management process to initiate management requests,
and CMIP specifies the protocol data unit (PDU) and associated procedures for transmitting management requests and
responses.

Agent Notifications and ResponsesManager Requests

System 1

CMIS

Manager

OSI Protocol
Stack (CMIP)

CMIS

Manager

OSI Protocol
Stack (CMIP)

ManagerProcess

MIB

CMIS
CMIP
MIB

= Common Management Information Service
= Common Management Information Protocol
= Management Information Base

Managed
Resources

Fig. 1. The OSI systems management architecture: the manager system and the managed system (agent).

CMIS

OSI Protocol
Stack (CMIP)

CMIS

OSI Protocol
Stack (CMIP)

System 2

Agent

OSI systems management relies heavily on the concepts of object-oriented design. A managed object class is a model or
template for managed object instances that share similar characteristics. An OSI systems management managed object class
is defined in terms of its attributes, operations that can be performed upon it, notifications that it may emit, and its
relationships with other managed objects. Attributes hold the data values associated with a specific managed object instance
and may have a simple or complex structure. The data type for an attribute is defined using Abstract Syntax Notation One
(ASN.1). The operations affiliated with a managed object class are closely associated with the CMIS services CREATE, DELETE,
GET, SET, and ACTION.

A managed object class can be defined for any resource that an organization wishes to monitor or control. A single managed
object class may represent a single network resource or a logical representation of many resources. Examples of hardware
resources include switches, workstations, PBXs, LAN cards, and multiplexers. Examples of software resources are queuing
programs, routing algorithms, and buffer management. Examples of logical resources include a network, a route, or a virtual
private circuit.

An agent application provides a view of its associated managed object instances. Manager applications are able to access the
managed object instance attribute values and manipulate managed object instances through the management interfaces
published by each managed object class.

The foundation of any network management system is a database containing information about the resources and elements
being managed. In OSI systems management, this data base is called the Management Information Base (MIB). The MIB is a
structured collection of managed object instances, together with their attributes. The MIB is typically a multilevel hierarchy
based on the managed object class containment relationships defined in the object model.

Article 6 October 1996 Hewlett-Packard Journal 3

switchPort
portNum = 1 (get)
portStatus = 1 (get/set)
packetsIn = 1000 (get)
packetsOut = 1500 (get)

switchPort
portNum = 2 (get)
portStatus = 0 (get/set)
packetsIn = 0 (get)
packetsOut = 0 (get)

switchCard
cardNum = 1 (get)
cardStatus = 1 (get)

switch
switchNum = 1 (get)
switchStatus = 1 (get)

MIB

switchCard
cardNum = 2 (get)
cardStatus = 1 (get)

Fig. 2. The contents of a subset of an agent’s Management Information Base (MIB)

showing a containment tree made up of object instances and their attributes.

The MIB hierarchy is constructed and traversed by using the object instances’ distinguishing attributes. For example, in Fig.
2 a switchPort object instance is identified by its portNum attribute, its associated switchCard cardNum attribute, and its switch
switchNum attribute (switchNum � 1, cardNum � 1, portNum � 2).

The general framework within which a MIB can be defined and constructed is referred to as the Structure of Management

Information (SMI). SMI identifies the data types that can be used in the MIB and how resources within the MIB are
represented and named.

To encourage consistency between managed object definitions and to ensure the development of object definitions in a
manner compatible with the OSI system management standards, the Guidelines for the Definition of Managed Objects
(GDMO) (ISO/IEC 10165-4, ITU-T Recommendation X.722) has been developed. This standard provides a formal
specification language for defining the interface for an OSI managed object class and the semantics for documenting
the attributes and operations (behaviors) associated with a managed object class. The specification also defines the
relationships among managed object classes in the management domain. See Article 5 for more about GDMO.

OSI Application Development

OSI application development falls into two major categories: manager development and agent development. This section
describes the development of the agent and manager applications without the assistance of a toolkit. Development with a
toolkit is discussed in the next section.

Manager development involves the development of applications that issue management requests and process agent
responses and notifications. Notifications are messages transmitted by agent applications when some trigger, such as
a threshold or an error condition, has been tripped. Manager application developers must complete the tasks of:

� Developing the user interface through which management requests can be initiated and the status of managed
objects can be viewed

� Developing the underlying communications for issuing requests and processing responses and notifications.

Agent development involves the development of the application that manages the managed object instance data, maintains
its portion of the MIB, processes inbound management requests, and emits notifications as necessary. Agent application
developers must complete the tasks of:

� Defining (usually in GDMO) the managed object classes associated with the resources managed by the agent
application

� Developing the underlying communications for processing management requests

� Monitoring managed resources and emitting notifications as appropriate.

X/Open , an independent, worldwide, open systems organization, provides application programming interfaces (APIs) to
facilitate the development of OSI applications. A primary objective of X/Open is to promote the portability and

http://www.hp.com/hpj/oct96/oc96a5.htm

Article 6 October 1996 Hewlett-Packard Journal 4

interoperability of OSI applications at the source-code level. For OSI systems management application developers, X/Open
provides the X/Open OSI Abstract Data Manipulation (XOM) APIs and the X/Open Management Protocol (XMP) APIs.2,3

XOM is a C-language interface specifically designed for use with application-specific APIs that provide OSI services, such as
X.400 and CMIS. The XOM API is a set of structured information objects and functions for accessing objects and shielding
programmers from much of the complexities of manipulating the underlying ASN.1 data types.

XMP provides the TMN application developer with a C-language interface to the underlying management services consistent
with the CMIS/CMIP and the Simple Network Management Protocol (SNMP). The XMP API is designed to be used and
implemented with the XOM API. XOM objects serve as the parameters for the XMP management service functions (see
Fig. 3).

SNMP
Protocol

xmp_api(xom_object)

SNMP
Object

CMIS
Object

CMIP
Protocol

Or

Fig. 3. The relationship between XOM objects and XMP management functions. XMP functions use XOM objects

as parameters to send the details of a manager’s request via either a CMIP or an SNMP protocol stack.

Manager applications initiate management requests and process responses returned from agent applications. XMP functions
that support issuing management requests include:

� mp_create_req(): Initiates a management request to create a managed object instance

� mp_get_req(): Initiates a management request to get data from a managed object instance

� mp_set_req(): Initiates a management request to set attributes in a managed object instance

� mp_receive(): Receives the agent’s response to support asynchronous requests or a notification emitted by
an agent.

XOM objects, defined as C structures, must be created and passed to these functions to transfer the details of the
management request. For example:

� mp_create_req() requires a CMIS-Create-Argument XOM object and is returned a CMIS-Create-Result XOM object

� mp_get_req() requires a CMIS-Get-Argument XOM object and is returned a CMIS-Get-Result XOM object

� mp_set_req() requires a CMIS-Set-Argument XOM object and is returned a CMIS-Set-Result XOM object.

� mp_receive() requires a CMIS-XXX-Result XOM object, with type depending on the response received, and is used
for receiving asynchronous requests.

Fig. 4 shows the specification for the CMIS-Get-Argument XOM object class. The specification shows that the GET request XOM
object class specification also contains references to other XOM object classes. To construct a CMIS-Get-Argument XOM object,
all of its contained XOM objects must also be constructed. The complexities of developing applications using the XOM API
can be seen. The developer is challenged with the tedious task of traversing several levels of nested XOM objects either to
prepare a request or to extract data from a response.

When developing agent applications using the XMP/XOM APIs, the agent developer is responsible for creating functions to
receive the request, determine the type of request (CREATE, GET, SET, ACTION, DELETE, etc.), validate the request, and process
the request. In validating the request, the agent developer must determine, for example, if the request is for a valid object
instance in the agent’s management domain, or confirm that a SET request has been received on a modifiable attribute.
A significant portion of the agent development task is in the implementation of request validation.

The agent developer must also manage the application’s representation of the containment tree, which is the in-process
structure holding the representation of the managed objects and their associated attribute values (see Figs. 1 and 2). As
management requests are received, the agent application must operate on the associated managed object representation
in the agent’s containment tree to perform operations such as:

� Create new entries in the containment tree as CREATE requests are received

� Delete entries in the containment tree as DELETE requests are received

Article 6 October 1996 Hewlett-Packard Journal 5

Class of object desig-
nated as starting point
of request

Identifier of object des-
ignated as starting
point of request

Permission and secu-
rity information

How to synchronize
selected object
instances

Subtree to be
searched

Characteristics to
test attributes

Attribute values to be
returned

CMIS-Get-Argument XOM Object Class:

An instance of an Attribute-Id object will designate the attribute to be
retrieved either through its global-Form or its local-Form.

An instance of an Attribute-Id-List object will contain zero or more attribute
identifiers, designating which attribute values to retrieve in the managed object
instance. Each attribute identifier must be constructed and has the following
form:

Attribute-Id-List XOM Object Class:

XOM Attribute

base-Managed-
Object-class

base-Managed-
Object-Instance

access-Control

synchronization

scope

filter

attribute-Id-List

Value Syntax

Object (Object-Class)

Object (Object-Instance)

Object (Access-Control)

Enum (CMIS-Sync)

Object (Scope)

Object (CMIS-Filter)

Object (Attribute-Id-List)

Value Syntax

Object (Attribute-Id)

XOM Attribute

attribute-Id Identifier for a managed
object attribute

XOM Attribute

global-Form

local-Form

Value Syntax

String (Object-Identifier)

Integer

A registered attribute
type identifier

Integer identifier
defined as part of the
application context

Fig. 4. A specification for the CMIS-Get-Argument XOM object class.

Attribute-ID XOM Object Class:

� Update entries in the containment tree as SET requests are received

� Traverse the containment tree when scoped and filtered requests are received.

A scoped request operates recursively on an entire branch of the containment tree, starting at a designated base managed
object. A filtered request designates criteria that managed objects must have to have a management operation performed.
Filters are an optional facility that the agent can provide. Scoping and filtering allow multiple managed objects to be selected
and operated upon in servicing a single management request.

After processing the request, the agent developer must prepare the response by constructing the associated XOM objects
and then use the XMP API to issue the management response.

The XMP API provides a collection of functions to support agent development, including:

� mp_receive(): Receives the indication of a management request

� mp_create_rsp(): Transmits a response to the manager’s CREATE request

� mp_get_rsp(): Transmits a response to the manager’s GET request

� mp_set_rsp(): Transmits a response to a manager’s SET request

As in the manager scenario, the data received by the agent will be in the form of an XOM object, and the agent application
developer must prepare an XOM object to return to the manager application after servicing the manager’s request.

Article 6 October 1996 Hewlett-Packard Journal 6

HP OpenView Managed Object Toolkit

As noted above, OSI systems management standards use object-oriented techniques to model applications in terms of
managed objects, which represent the resources in a network. This makes object-oriented programming techniques,
including the C++ programming language, a natural implementation choice to use for development, starting from object
analysis to application coding.

Historically, developers implementing standards-based OSI applications have been required to implement the entire
management application, agent, and manager from scratch, using the complex XOM/XMP APIs and C bindings, as described
above.

However, the OSI systems management standards precisely define a generic structure and behavior that apply to all agent
applications. The agent developer’s task can be greatly simplified by implementing the generic pieces with reusable software
components, which can be assembled to build agent applications. In addition, GDMO is provided for formally defining the
specific managed object class attributes and interfaces. Given a GDMO specification, it is possible to define a C++ class
mapping representation of the GDMO managed object classes.

These two fundamental philosophies form the foundation for the HP OpenView Managed Object Toolkit (MOT).
The Managed Object Toolkit supplies:

� An object-oriented agent application framework that provides the general-purpose, reusable software
components that make up the generic aspects of an OSI agent application (An application framework is a
generic application that can be tailored to meet specific requirements. It handles all generic operations that are
common to all applications in a specific domain. The agent framework is provided as a library with the
Managed Object Toolkit.)

� A GDMO-to-C++ and an ASN.1-to-C++ code generator that provides the OSI application developer with a C++
interface for the implementation of the specific behaviors of a managed object in an agent application and C++
classes for preparing management requests in a manager application

� An agent application generation capability that merges the generic framework and the specific GDMO-based
generated C++ classes into an operational agent application.

Agent application development, which previously had taken programmers weeks, or even months, to code using the XMP/
XOM APIs can now be generated in a matter of minutes or hours. The Managed Object Toolkit allows agent developers to
focus on the implementation-specific details of their applications, since they no longer need to be concerned with the
tedious task of using the XMP/XOM APIs to implement the CMIS communications model.

The Agent Development Process
Using the Managed Object Toolkit, agent development is accelerated with a simple five-step process (see Fig. 5):

HP OpenView
GDMO Modeling

Toolset

GDMO Object Definitions HP OpenView
Managed Object

Toolkit

HP OpenView
Distributed

Management
Platform

Developer’s Kit

MOT-Generated
Agent

HP OpenView
Distributed

Management
Platform

MOT-Based
Manager

make

HP OpenView
Distributed

Management
Platform

Fig. 5. The process flow for agent and manager development using the Managed Object Toolkit (MOT).

1

2

3
5

4

1. Define the GDMO managed object class specifications. The HP OpenView GDMO Modeling Toolset (GMT) can
greatly simplify the design of managed object classes by providing a graphical, forms-based interface for
defining and browsing GDMO managed object class definitions. It also provides a graphical representation of
the object class inheritance and managed object naming hierarchies. The HP OpenView GDMO Modeling
Toolset is described in Article 5.

http://www.hp.com/hpj/oct96/oc96a5.htm

Article 6 October 1996 Hewlett-Packard Journal 7

2. Submit the GDMO object model to the Managed Object Toolkit code generator. This will generate C++ class
representations of the GDMO managed object classes, an agent main() function, makefiles to compile the agent
executable, and an object registration file for the HP OpenView Distributed Management Platform’s managed
object directory service. The HP OpenView Distributed Management Platform is described in Article 1.

3. Run the provided makefile, which compiles an operational “default” agent, so-called because it implements
default behaviors for the managed object interfaces.

4. Register the agent’s objects with the HP OpenView Distributed Management Platform’s object directory
service.

5. Run the agent application.

The executing agent is now ready to accept management requests, including CREATE, DELETE, GET, SET, and ACTION. Since the
agent application is also tightly integrated with the HP OpenView Distributed Management Platform, it is able to leverage
platform services immediately, such as the object registration service for object location transparency and event routing
through the event management services. See Article 4 for more about event management.

Managed Object Toolkit Agent Capabilities
The Managed Object Toolkit agent framework handles all aspects of the underlying management request and response
communications between agent and manager, relieving the programmer of significant coding effort, including:

� Receiving CMIS requests (CREATE, DELETE, GET, SET, ACTION, etc.), and routing them to the appropriate CMIS service
handler

� Validating requests and transmitting standard CMIS errors when invalid requests are received (For example,
receiving a GET request on an attribute in a nonexistent managed object instance will generate a standard
NO-SUCH-OBJECT-INSTANCE error message.)

� Creating and managing the agent’s management information tree, which holds the managed object instances
and their attributes representing the resources managed by the agent

� Supporting scoped and filtered requests in which a single request can be routed to several managed object
instances

� Preparing and transmitting responses, including packaging multiple replies in response to a scoped request

� Emitting standard CMIS notifications when managed object instances are created, or deleted, or when
an attribute value is modified.

By providing the CMIS communications handling infrastructure, the Managed Object Toolkit frees the programmer from the
tedious task of implementing code for processing management requests and responses and allows the developer to focus on
the value-added specific agent functionality.

Customizing the Managed Object Toolkit Agent
Because specific managed object behaviors cannot be completely specified using GDMO, the Managed Object Toolkit
agent framework and the generated classes cannot fully implement managed objects on their own. The framework
provides a default object behavior, and the Managed Object Toolkit C++ code generator provides a code skeleton for the
implementation. The complete agent application is built by generating the agent skeleton code from the GDMO specification
and then customizing the generated code stubs (C++ methods). Developers can also integrate Managed Object Toolkit-
provided classes to implement communications with external devices (supported through standard file descriptors) and
implement a cooperative multitasking agent.

For example, if a managed object class called switchPort includes an attribute called packetsOut which was defined in the
GDMO specification to be “gettable” (see Fig. 2), the Managed Object Toolkit generates a file called MOC_switchPort.cxx and
includes an empty method called get_packetsOut():

MOC_switchPort.cxx (filename)
virtual void Mot_switchPort_C::get_packetsOut(OVmotMoGetResultC & result_r)
{
}

If the developer wishes to override default behavior of the CMIS GET request for the packetsOut attribute to query a register in
the associated physical device, the get_packetsOut() method is easily customized. This method includes a response parameter,
to which the programmer assigns a response value, and the Managed Object Toolkit agent framework will appropriately
package the response and return it to the requesting manager application.

The Managed Object Toolkit provides significant value for processing requests, especially if a GET packetsOut request is part of
a scoped request, which is a single management request that will operate, potentially, on several managed object instances in
the agent. The agent application must route the request to all of the relevant managed object instances, process the request,
gather each of the individual responses, package them, and return them to the requestor. With the XOM/XMP APIs, the agent
developer is required to implement the entire process, gather all of the responses, package them, and transmit the multiple

http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a4.htm

Article 6 October 1996 Hewlett-Packard Journal 8

responses to the requestor. With the Managed Object Toolkit, the agent developer is only required to implement the handlers
for each individual request. Since the agent framework manages all aspects of the request and response communications, the
framework will track the scoped request, route it to all appropriate object instances in the Managed Object Toolkit-managed
containment tree structure, collect all of the individual responses appropriately, and transmit the composite response to the
requestor. The Managed Object Toolkit-based agent developer is required to implement only the actual details of each
attribute’s request handler.

Implementing an ACTION operation provides another good scenario. The CMIS ACTION service provides a general purpose
object interface for implementing any operation in a managed object instance. For example, an action may be defined to
reset a port on a switch. As in the GET scenario, the Managed Object Toolkit generates an empty C++ method for the
programmer to fill in the specific details for servicing the ACTION request. But unlike the GET scenario, the standards cannot
specify the appropriate response to an ACTION operation, and GDMO does not provide syntax for the specific implementation
of an ACTION operation. Therefore, it is entirely the agent developer’s responsibility to provide the implementation details
associated with an ACTION request.

The following generated method provides the programmer with the ACTION information the management application passed
along, and as in the GET scenario, an empty result object that the programmer fills in to transmit the agent’s response. The
MOT generates a file called MOC_switchPort.cxx, which includes the empty method resetPort_action().

Moc_switchPort.cxx (filename)
virtual void Mot_switchPort_C::resetPort_action(const Mot_resetPort_InfoC * actinfo_p,

OVmotMoActResultC & result_r)
{
}

Again, the Managed Object Toolkit provides significant value, requiring the programmer to implement only the details of
the action handler and assign the action response, allowing the programmer to disregard implementing any of the CMIS
communications processing.

Managed Object Toolkit Agent Framework
In typical object-oriented design philosophy, the agent framework can be decomposed into several supporting frameworks
(see Fig. 6). Each subframework, implemented as a class library, provides a particular category of functionality that
contributes to the overall agent request processing task.

The agent framework is provided as a library with the Managed Object Toolkit and is made up of the following components:

CMIS Service. This class library provides classes that enable convenient access to the CMIS services. It contains base classes
that define the CMIS services and subclasses that implement the CMIS services using the XMP API.

CMIS Transactions. This class library provides classes that implement the incoming CMIS requests. It provides an agent
application with the functionality to process the receipt of CMIS CREATE, DELETE, GET, SET, and ACTION indications.

Containment Tree Framework. This class library provides an infrastructure for developing a containment tree representation.
It also provides concrete classes that implement an in-memory representation of the containment tree.

Management Information Syntax Framework. This class library provides the infrastructure for developing C++ classes that
represent syntaxes specified in ASN.1 (e.g., attribute values, action information, and action reply syntaxes). It provides base
classes for representing ASN.1 syntaxes.

The Managed Object Toolkit C++ class generator generates C++ classes representing ASN.1 types defined in the GDMO
specification. These C++ classes are derived from the base classes provided in the management information syntax
framework (see Figs. 2 and 7). Fig. 7 illustrates how the Managed Object Toolkit generates C++ classes for GDMO-defined
attributes. All toolkit-generated attributes will be derived from the OVmotAttC C++ class provided by the Managed Object
Toolkit.

Managed Object Framework. This class library provides an infrastructure for developing managed object implementations.
It provides C++ base classes for representing managed object instances and managed object metadata.

The Managed Object Toolkit C++ class generator will generate C++ classes representing the GDMO object classes defined in
the GDMO specification. These C++ classes will be derived from the base classes provided in the managed object framework.
The C++ inheritance hierarchy reflects the GDMO specified inheritance hierarchy. For example, Fig. 8 shows the C++
inheritance hierarchy for the GDMO-defined switchPort managed object class. In the GDMO specification, the switchPort
managed object class is derived from the top managed class. Notice the similarity in the GDMO-defined inheritance hierarchy
and the C++ inheritance hierarchy generated by the Managed Object Toolkit.

The managed object framework uses C++ classes from the management information syntax framework to represent
attribute, action, and notification syntaxes.

Article 6 October 1996 Hewlett-Packard Journal 9

Communications
Framework

Containment Tree Framework

Managed System
(Agent) Managed Object Framework

Management Information
Syntax Framework

Managed Object
Classes Attributes

HP OpenView Distributed
Management Platform

Agent Process

CMIS Services

CMIS Transaction

HP OpenView Distributed
Management Platform

Manager Process

Application Code

CMIS Services

Managing System
(Manager)

Requests Responses Event Notification

Fig. 6. Managed Object Toolkit frameworks.

OVmotAttC

MOT_packetsOut_C

MOT-Provided Framework C++ Class for Attributes

MOT-Generated GDMO-Based Attribute C++ Class

Fig. 7. The inheritance hierarchy of C++ classes from the base classes

provided in the management information syntax framework.

CMIS ASN.1 Types. This class library provides specializations of the ASN.1 framework classes for representing CMIS
arguments (e.g., CMIS-Create-Argument and CMIS-Get-Argument).

Communications Framework. This class library provides an infrastructure for developing C++ classes that are responsible for
controlling communication with external devices. It coordinates between objects responsible for different communication
endpoints (file descriptors) using an event-driven environment, which encapsulates the handling of the UNIX select()
function. The library also includes concrete classes for handling communication with the HP OpenView Distributed
Management Platform process management functions.

The communications framework also provides an abstract tasking class, based on USL’s (UNIX System Laboratories) task
library, which can be leveraged to implement a cooperative multitasking application. Each task is cooperative, in that it
owns control of a process until it exits or explicitly gives up control. The Managed Object Toolkit CMIS transactions are a
collection of concrete task classes developed for processing CMIS requests. The communications framework classes allow
the developer to create a pseudo multitasking, event-driven interface for communicating with external devices.

Article 6 October 1996 Hewlett-Packard Journal 10

OVmotMoC

Mot_top_C

MOT-Provided Framework C++ Class

MOT-Generated GDMO-Based Managed
Object C++ Class

Mot_switchPort_C MOT-Generated GDMO-Based Managed
Object Class

MOT C++ Inheritance Hierarchy

top

switchPort

GDMO Inheritance Hierarchy

Fig. 8. The C++ GDMO inheritance hierarchies of the GDMO-defined switchPort managed object class.

Common Application Environment. This class library provides facilities for multilevel tracing and logging.

Foundation Types. This class library provides classes for representing common data structures such as lists and strings and
classes for memory management and reference counted objects. It is based on the OSE class libraries for C++.

Using The Frameworks
The class libraries are leveraged by the Managed Object Toolkit agent library for processing manager requests. Many of these
classes are also externally visible, allowing application developers to leverage them for their own agent development needs.

For example, when a CMIS GET request is received, the agent’s communications framework will receive and identify the
get-indicate, and then construct and initiate a Managed Object Toolkit-defined CMIS get-transaction object instance. This
get-transaction object will manage the overall processing of the GET request, interacting with the containment tree framework,
the managed object framework, and the management information syntax framework to complete the processing of the GET
request. (The C++ object class representation of the managed object instance and the GET handler for this request are
contained in the managed object framework, while the syntax associated with the attribute value is held in the management
information syntax framework.)

An agent developer desiring to implement a multitasking interface to external entities, such as devices or databases, can
derive a user-defined task class from the Managed Object Toolkit’s abstract tasking base class. The application developer
then constructs and initiates tasks in the application code, as in the following code fragment.

myTask.hxx (filename)
 myTaskC:public OVmotTxnC
 {
 public:
 myTask();
 execute();
 ...
 private:
 ...
 };

 myTask.cxx (filename)
 myTaskC :: execute()
 {
 // provide code for task implementation
 }

Article 6 October 1996 Hewlett-Packard Journal 11

The following code shows the construction and invocation of the above task in one of the CMIS service handling routines.

MOC_switchPort.cxx (filename)
 virtual void Mot_switchPort_C::get_packetsOut(OVmotMoGetResultC & result_r)
 {
 myTask atask; // construct a task
 atask.execute();// run task
 }

The communications framework provides a communication coordinator that encapsulates the UNIX select() interface. The
communication coordinator is used by the Managed Object Toolkit agent framework to receive and process incoming CMIS
requests.

The application developer can also use the communications coordinator to process nonCMIS-oriented communications
within the agent application. An example of this would be communicating to an external device through a serial interface.
The agent developer need only register the opened file descriptors with the Managed Object Toolkit-provided
communications coordinator and implement the associated communications handler (read, write, and exception). Then
through the registration and callback mechanism, the communication endpoint processing code will be executed when the
file descriptor triggers select() as in the following code.

somecc.hxx (filename)
 SomeCC : OVmotCC
 {
 public:
 SomeCC();
 ~SomeCC();
 void doRead(int fd);
 private:
 int fd; //File descriptor associated
 //with this communication
 //interface
 };

 somecc.cxx (filename)
 SomeCC::SomeCC ()
 {
 fd = open (...); //open a file descriptor
 OVmotCoordC::registerCC (fd,OVmCoordC::OVMOT_KE_READ,this)
 // register file descriptor with MO commnications Coordinator
 // register for read operations, callback to
 // this->doRead() when data is on fd
 }

 SomeCC :: ~SomeCC ()
 {
 OVmotCoordC::deRegisterCC (fd,OVmotCoordC::OVMOT_KE_READ, this);
 close (fd);
 // deregister file descriptor with MOT Communications
 // Coordinator and close file descriptor
 }

 SomeCC :: doRead (int fd)
 {
 // Receive and process the data buffered on
 // the file descriptor
 }

When data is sensed on this open file descriptor, the agent’s communication coordinator will call the doRead() method,
processing the data on the communications interface.

Developing Manager Applications
Unlike the agent development process, the Managed Object Toolkit does not generate an executable manager application
(see Fig. 5). For manager developers, the Managed Object Toolkit provides an intuitive C++ interface which encapsulates the
complexities of XOM object manipulations and assists the manager developer in the management communications
implementation aspect of manager applications.

Article 6 October 1996 Hewlett-Packard Journal 12

Manager developers use the XMP API to issue requests and leverage the Managed Object Toolkit to build the XOM object
parameters required by the XMP API (see Fig. 3). The manager developer has access to:

� Managed Object Toolkit-provided CMIS service classes to build request objects and parse response objects

� Managed Object Toolkit-provided convenience classes, which represent the underlying components of the
CMIS request objects, including C++ class representations for:

� Fully distinguished names
� Attribute identifier lists
� Attribute lists
� Base managed objects for scoped requests
� Filters

� Managed Object Toolkit-provided stream-based classes for transforming C++ request objects to XOM request
objects and XOM response objects to C++ response objects

� Managed Object Toolkit-generated GDMO-based C++ classes representing the managed object classes

� Managed Object Toolkit-generated ASN.1-based C++ classes representing the syntaxes associated with the
managed object attributes, actions, and notifications.

The following scenario is an example of a Managed Object Toolkit-based manager GET request. Note that classes that
begin with OVmot are Managed Object Toolkit-provided classes and classes that begin with Mot_ are Managed Object
Toolkit-generated classes originating from the GDMO specification.

Scenario: Issue a scoped GET request for all of the “UP” ports on a specific card in a switch and return the in and out packet
counts across ports that have traffic. Note the following containment relationship (see Fig. 2):

� A switch contains cards.

� A card contains ports.

1. Construct each of the attributes that make up the fully distinguished name for a card in a switch.

Mot_switchNum_C switchNum(100);
Mot_cardNum_C cardNum(10);

This code fragment assigns switchnum to 100 and cardnum to 10.

2. Construct the fully distinguished name for the port base managed object of the request.

OVmotDnC dn;
dn << switchNum << cardNum;

3. Construct the list of attribute identifiers associated with the attribute values to be retrieved.

OVmotAttIdListC attr_ids;
attr_ids << Mot_portStatus_id <<
Mot_packOut_id << Mot_packetsIn_id;

4. Construct the base managed object identifier of the port associated with the request. Request processing to
begin at the switch card with cardNum = 10 associated with the switchNum = 100.

OVmotBaseMoIdC base_mo_id (Mot_switchCard_id, dn);

5. Construct the filter. This code fragment looks for instances where the values of packetsOut and packetsIn are
greater than zero and the portStatus is “UP.”

OVmotFilterC filter(Mot_portStatus_id== 1
// 1 denotes UP
&&(Mot_packetsOut_id > 0
||Mot_packetsIn_id > 0));

6. Construct the Managed Object Toolkit GET argument.

OVmotGetArgC get_arg(base_mo_id,
OVMOT_NIL//Omit Access Control
OVMOT_CMISSYNC_BEST_EFFORT,
OVMOT_SCOPE_WHOLE_SUBTREE,
& filter,
attr_ids);

// print to standard output
cout << ”C++ Constructed Get Argument” << get_arg << endl ;

Article 6 October 1996 Hewlett-Packard Journal 13

7. Build the XOM CMIS-Get-Argument from the Managed Object Toolkit C++ GET argument.

OM_object xom_object;
OVmotOXomStrC get_strm (XomWorkspaceP -> qWorkspace());
get_strm << get_arg;
xom_object = get_strm.qAdoptXomPrivObj();

8. Issue a standard XMP get request.

mp_status =mp_get_req(Session,
MP_DEFAULT_CONTEXT, xom_object,
&result, &invoke_id);

Without the Managed Object Toolkit-provided and Managed Object Toolkit-generated classes the manager developer would
be faced with the challenge of constructing the XOM CMIS-Get-Request object passed in the mp_get_req() function, a task that
could require at least six times as many lines of code.

Summary
Developers who build telecommunications network management applications are implementing large, complex solutions
and telecommunication service providers rely on interoperability standards to integrate and deploy these solutions in a
heterogeneous networked environment. Developing applications that communicate via the standard CMIS and CMIP
communication interfaces has historically been an extremely complex and time-consuming task using the XMP/XOM APIs.
The HP OpenView Managed Object Toolkit offers the developer significant assistance in this task by helping to transform a
GDMO specification into an executable, extensible agent application and providing an intuitive C++ interface for
implementing agent behaviors and manager applications.

Acknowledgments
The author would like to acknowledge the contributions of the many individuals who participated in the development and
deployment of the HP OpenView Managed Object Toolkit, including Tom Burris, Mark Smith, and Dan Rice who assisted in
the design, build, and test processes.

References
1. W. Stallings, SNMP, SNMPv2, and CMIP, The Practical Guide to Network Management Standards,

Addison-Wesley Publishing Company, 1993
2. X/Open CAE Specification, Systems Management: Management Protocols API (XMP), X/Open Company

Limited. 1994.
3. X/Open CAE Specification, OSI Abstract Data Manipulation API (XOM), X/Open Company Limited and X.400

API Association, 1991.

Bibliography
1. Managed Object Toolkit Technical Evaluation Guide, Hewlett-Packard, 1995.
2. Principles for a Telecommunications Management Network, ITU-T Recommendation M.3010, 1992.
3. TMN Interface Specification Methodology, ITU-T Recommendation M.3020, 1992.
4. TMN Management Functions, ITU-T Recommendation M.3400, 1992.
5. Information Technology—Open Systems Interconnection—Structure of Management Information:

Management Information Model, ITU-T Recommendation X.720 (ISO/IEC 10165-1), 1992.
6. Information Technology—Open Systems Interconnection—Structure of Management Information: Guidelines

for the Definition of Managed Objects, ITU-T Recommendation X.722 (ISO/IEC 10165-4), 1992.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a7.htm

Article 7 October 1996 Hewlett-Packard Journal 1

A Software Toolkit for Developing

Telecommunications Application

Components

To be effective, application developers must understand the data
available to their applications, the operations required to access
the data, and the steps required to turn their understanding into an
implementation. A prototype development environment has been
built that helps the developer explore and understand the data in
the Management Information Base (MIB) and construct and deploy
pieces of TMN management applications.

by Alasdair D. Cox

Telecommunications network operators own the largest distributed computing systems in the world. Their networks carry
enormous volumes of traffic, much of which is highly valuable. Maintaining service is essential. The penalties for failure are
great, and not just financial—emergency services and some air traffic control transmissions use the same telephone
network. Not surprisingly, network operators have considerable systems and network management needs.

The ability to provide new services is becoming vital in the telecommunications business. Speed and flexibility are key
requirements, not only of the initial implementation and its deployment, but also of the management systems that ensure
that service continues to operate efficiently. The rapid development of effective management systems is therefore a major
concern.

The applications that telecommunications companies use to manage their equipment, networks, and services they provide
are known as operations support systems, or OSS. An established network operator will have hundreds of existing
applications and a continuing need to develop more as their systems and technologies change.

The development of new applications in the Telecommunications Management Network1 (TMN) area is still carried out with
the aid of a C or C++ compiler. The developer must understand the data that is available to the application, the operations
that can be performed to reach it, and the application program interfaces (APIs) and tools available to support those
operations.

HP OpenView products provide support in a number of these areas. The GDMO Modeling Toolset (Article 5) helps the
application developer understand the kind of data that is stored in the TMN world. The OpenView Distributed Management
platform (Article 1) provides standard APIs that the developer can use to send CMIP (Common Management Information
Protocol) messages to the data. The Managed Object Toolkit (Article 6) provides further support to the C++ programmer.

In this paper we describe a prototype development environment that addresses some of the demands of application
development in the telecommunications world. This prototype helps the user explore the available management data and
make enough sense of it so that the user can construct and deploy pieces of management applications.

Background
The Telecommunications Management Network is an attempt to standardize the management of telecommunications
networks. It consists of a set of existing and evolving recommendations from the International Telecommunications Union’s
Telecommunications Standardization Sector, known as the ITU-T.2 These recommendations are based on a number of
previous recommendations on Open Systems Interconnection (OSI) systems management, now adopted as international
standards.3

The OSI systems management standard proposes a Management Information Base (MIB),4 which is a collection of data
necessary for managing a network. This data is organized hierarchically and related by containment. The data is in the form
of objects, called managed objects, which are defined by the Guidelines for the Definition of Managed Objects.5

The Guidelines for the Definition of Managed Objects, or GDMO, is the language used to define the structure and some of the
relationships between managed objects. The GDMO definition is in the form of templates used to define managed object
classes (classes in standard object-oriented terminology), attributes (instance variables), actions (methods), notifications
(events that can be emitted by objects), and name bindings, which specify the ways in which objects can be related by
containment in the MIB. See Article 5 for more about GDMO.

http://www.hp.com/hpj/oct96/oc96a5.htm
http://www.hp.com/hpj/oct96/oc96a1.htm
http://www.hp.com/hpj/oct96/oc96a6.htm
http://www.hp.com/hpj/oct96/oc96a5.htm

Article 7 October 1996 Hewlett-Packard Journal 2

The Common Management Information Service (CMIS)6 is used to interact with the MIB, and the Common Management
Information Protocol (CMIP)7 is the way service messages are encoded for transmission between TMN management
applications and the MIB.

The available services include getting information from managed objects, changing their values, making method calls, and
creating and deleting managed objects. In addition, managed objects can emit events.

The Development Environment
We believe that telecommunication management applications of the future will be composed of a number of large-grained,
distributed objects. We call these objects application components. Application components differ from managed objects in
that, at their simplest, managed objects represent logical and physical parts of a network. Application components, on the
other hand, are pieces of the system that manages the network and the services running on the network, and they may use,
manipulate, and create managed objects as they work.

Some components will be specialized for a particular management function while others will be of a more general nature
and may provide services to more than one application. Applications will need access to data in a number of sources,
including other applications, traditional databases, and the MIB.

We believe that the parts of the application that act as data bridges will be split into components, each capable of supporting
transactions to a data source. Since our intention is to support the development of telecommunication management
applications, we decided to focus on the construction of application components that interact with data, and thus we have
concentrated on the TMN MIB.

We have built a prototype development environment that includes three tools that operate together to support the
development life cycle of application components (see Fig. 1). In the initial stages of using the prototype, this means
providing aid in understanding the problem and progressing through to enabling the implementation, testing, and
deployment of the solution. By taking this approach we believe the development process for application components
can be greatly improved.

Application
Component

Editor

TMN Management
Information Base (MIB)

Application
Component
Repository

Operation
Repository

MIB
Browser

Operation
Definer

Distributed Applications

Fig. 1. Prototype TMN development environment.

Although the process is likely to be iterative, the basic steps in developing an application component using the TMN
prototype environment shown in Fig. 1 are:

� Navigation through and exploration of the MIB using the MIB browser to build an understanding of the data
and the way it is used

� Prototyping CMIS operations using the operation definer, which helps to expand or verify the developer’s
understanding (The results of executing these operations may be fed back into the browser to aid navigation.)

Article 7 October 1996 Hewlett-Packard Journal 3

� Storing operations away for future reuse or as documentation aids

� Construction of fragments of application functionality from a number of operations using the application

component editor

� Deployment of the completed components as distributed CORBA* (Common Object Request Broker
Architecture) or OLE (Object Linking and Embedding) objects or as source code for inclusion in libraries or
directly into applications.

The use of a common underlying architectural framework is a major reason why the prototype appears and behaves as an
integrated development environment rather than as a set of standalone tools. This framework is discussed later in this
article.

MIB Browser
The MIB Browser provides the user with a graphical view of the MIB (see Fig. 2). By interacting with and manipulating this
view, the user is able to navigate through the MIB to explore the structure and content of the data stored in its managed
objects.

Fig. 2. Output from the MIB browser showing a cached subset of the managed objects in the MIB.

The view shown to the user is a cached subset of the managed objects that exist in the MIB. The contents of this cache are
built up as the user navigates through the MIB. A number of simple operations are provided for this navigation, each causing
a CMIS service request to be sent to the MIB. The replies to this request, which can vary from none to very many, are used to
update the cache and hence the view presented to the user.

The browser uses metadata to add meaning to the presentation and to help the user navigate. For example, the names of
managed object classes and attributes and the details of attribute values are presented to the user as words, rather than as
the numbers that the underlying infrastructure uses. In addition, the browser is sometimes able to advise the user in advance
when a navigational operation is guaranteed to find nothing new. This decision is arrived at by using metadata that describes
the ways in which the MIB can be organized. The design of the MIB browser, including how the cache and metadata fit in, is
shown in Fig. 3.

The MIB browser is useful to application developers and operations staff who understand the network and how it is
managed. It is also useful as an educational aid for training the entire staff. Its main benefit is that it is not necessary to
understand the technical details of a particular area to use the browser successfully. In fact, we find that it helps users to
increase their understanding of the network.

Navigation by CMIS
The MIB browser provides five predefined CMIS operations which can be used to retrieve data from the MIB. The user is
shielded from the execution details of CMIS operations by the user interface.

* CORBA is from the Object Management Group (OMG) and OLE is from Microsoft .

Article 7 October 1996 Hewlett-Packard Journal 4

Metadata

Graphical
Presentation

Browser
Control

Cache

Internal
Representation

of an Executable
Operation

CMIS
Services

Navigation

Cache

Operation Viewer
(A Kind of Browser)

User Interaction

Update
Cache Update

Operation
Definer

Context

Confirmations
Request

Editing Execution

Fig. 3. The design of the MIB browser.

MIB Browser

Three of the CMIS operations (expand fully, expand one level, and expand by class) are used to discover the structure of the
MIB. The result of executing them is a set of managed object names. The MIB browser interface presents them as nodes on
the tree displayed to the user.

A fourth operation (all attributes) is used to extract the details of a managed object. These details, or attribute values, of the
managed object are stored in the browser’s cache.

Finally, the fifth operation (find class) is used to find out about the managed object class of an object whose existence has
been inferred from the result of an earlier operation but about which we know only the name.

We decided against making the structure-finding operations also discover the contents of the managed objects they
encountered, even though this would have reduced the need for the fourth operation. There were two reasons for the
decision: performance and size. It is not usually possible to predict how many responses will be returned from executing
an operation. For example, a large area of the MIB may lie within the scope of an operation, possibly containing several
thousand objects. Since the nature of the underlying CMIP protocol means that each object discovery results in the
transmission of an asynchronous message to the browser, if an operation requested the contents of each managed object, the
size of each message would increase greatly and performance would be severely affected. In addition, the user is probably
not interested in the details of most discovered objects. Knowing how they are organized is often what matters. So the
browser does not need to store the details of every managed object.

We realized that we could let the user decide which managed objects had interesting contents, so we provided a set of
navigational operations and a drill-down* operation, for the user to execute appropriately.

The following sections describe the navigation operations in more detail, and Fig. 4 shows the values assigned to the fields in
CMIS GET requests for each of the operations. Article 6 provides more information about CMIS GET requests.

Values

Expand Fully

Expand One Level

Expand by Class

All Attributes

Find Class

<From Browser Entry>

<From Browser Entry>

<From Browser Entry>

<From Browser Entry>

actualClass [5]

<From Browser Entry>

<From Browser Entry>

<From Browser Entry>

<From Browser Entry>

<From Browser Entry>

—

—

—

—

—

bestEffort

bestEffort

bestEffort

bestEffort

bestEffort

wholeSubtree

firstLevelOnly

wholeSubtree

baseObject

baseObject

—

—

*

—

—

{ }

{ }

{ }

—

{ }

Attribute
ID ListFilterScopeSynchronization

Access
Control

Base Managed
Object Instance

Base Managed
Object Class

CMIS GET
Request

* { or
{

{equality{objectClass,<user-supplied>}},
. . .

}
}

Fig. 4. The values submitted in CMIS GET requests to implement the MIB browser navigation operations.

* A drill-down operation is one that enables the user to see greater detail about a managed object.

http://www.hp.com/hpj/oct96/oc96a6.htm

Article 7 October 1996 Hewlett-Packard Journal 5

Expand Fully. This is the crudest navigational operation. It discovers all the managed objects below a specified position in the
MIB. The user selects a managed object and then presses the expand fully button on the browser window. The class and name
of the selected managed object provide the context for the operation. These values are used to fill in the base managed
object class and instance fields of the request.

Expand One Level. This is a safer operation than expand fully in that it can be used when expand fully would be inappropriate.
Rather than discover all the managed objects below the selected position in the tree, expand one level discovers only those
objects immediately beneath the selected position. In MIB-speak, it finds all the managed objects contained by the base
object. In computer-speak, it finds the children.

Expand by Class. In this operation the user is presented with a list of those managed object classes that could possibly have
instances below the selected position in the MIB. This list is computed from the metadata (described below). The user can
select the managed object classes of interest or scan the list and choose likely candidates. Prior knowledge is helpful but not
essential. The choices are used to parameterize the request.

All Attributes. This drill-down operation targets a single managed object that was discovered by an earlier navigation. The
values of all the object’s attributes are obtained.

Find Class. This operation can be invoked on a managed object whose existence and name have been inferred from the
results of an earlier operation, but whose class is unknown.

Operation Definer
The MIB browser provides the user with a small number of ways to construct CMIS service requests. While this is an
advantage in terms of ease of use, it can appear limiting to users with a need for selective information. To those with a
greater understanding of the area (i.e., the protocols and information models used) the operation definer gives full flexibility
in the construction of CMIS requests. Operations defined this way can be used to extend the browser’s repertoire. The design
for the operation definer is shown in Fig. 5.

Metadata

Graphical
Presentation

Structured
Editor

Internal
Representation

of an Executable
Operation

CMIS
ServicesCache

Operation Viewer
(A Kind of Browser)

Internal
Representation
of an Operation

Cache

MIB Browser

Repository

Application
Component

Editor

Code GenerationContext

Parameterization

Actual
Parameters

Execution

Cache
Update

Confirmations
Request

Fig. 5. The design of the operation definer.

Operation Definer

As the name implies, the operation definer helps the user specify an operation to be performed on the MIB. Once its
specification is completed, the operation can be sent as a service request and the corresponding results can be shown to
the user using an operation viewer, which presents information in a way that is similar to the MIB browser. The user can
examine the results, and if necessary, modify the operation and reissue it. This cycle can continue until the user is satisfied
with the operation.

The results obtained by executing an operation can be added to the MIB browser to expand the view it presents of the MIB.
In this case, the operation definer can be seen as a powerful navigational tool that augments the basic browser.

Alternatively, the real benefit of the operation definer might be the operation itself, rather than the results of executing it
once. The results returned will be useful because they can help prove that an operation works correctly. The user might want
to store such an operation so that it can be used again. The operation definer maintains a repository for this purpose. By
adding to this repository, the user can build up a toolbox of useful operations, similar to the way a system administrator
builds up a library of shell scripts.

Article 7 October 1996 Hewlett-Packard Journal 6

For an operation to be executable, all aspects of its specification must be fixed. The operation definer picks up the starting
point, which is the base managed object’s name and class, from the browser context. All other aspects of an operation are
defined by the user. Once this is done, the operation can be tested and its definition refined until the user is satisfied with it.
If the finished operation is going to be used again, it is likely that the user will want it to be made more general-purpose. A
stored operation can be made more general-purpose by specifying that some aspects of it become parameterized, meaning
that each time it is used the values of those parameters must be supplied. This allows the effect of the operation to be
tailored to the context in which it is applied. In this way, for example, it becomes possible for an operation defined on a
particular named network element to be applied to any network element by supplying the appropriate name and type
information.

Application Component Editor
As stated earlier, we expect that future telecommunications applications will be made up of a number of large-grained,
distributed objects. We call the objects application components. Some application components will communicate with
data sources, including the MIB, to obtain the information that other components will use to perform management functions.
We decided to concentrate our efforts on supporting the development of application components that interact with the MIB.
They play a more constrained role that is better suited to automation, and the data they interact with is described by a
standard form of metadata. A window dump from the application component editor shown in Fig. 6.

An application component has four parts:

� Entry points that make up the visible interface of a component (Other parts of an application make calls to this
interface to use a component.)

� Operations that interact with the MIB and issue CMIS service requests and receive results

� Support functions, or scripts, that tie together the operations to implement the required functionality

� Test functions, some of which test individual operations and some of which test the whole component.

As shown in Fig. 7, the application component editor uses the operation definer’s repository. Operations stored in the
repository can be selected for inclusion in components. They are translated into source code and, like a method, will
perform the same operations when they are executed. The fields that are identified as parameters when the operation is
stored can be treated as formal parameters to the method. In addition, simple test functions are automatically generated that
test the operation with its original parameter values. The results obtained from running the test functions are presented to
the developer in the same style as the MIB browser.

Although source code generation is not strictly necessary, the ability to generate source code helps make the tools
acceptable to the traditional telecommunications OSS (operations support systems) developer market.

Fig. 6. Output from the application component editor.

Article 7 October 1996 Hewlett-Packard Journal 7

Signature
Editor

Source
Code Editor

Internal
Representation

of an Executable
Operation

CMIS
Services

Data Viewer
(A Kind of
Browser)

Internal
Representation
of an Operation

Code Generation

Actual
Parameters

Execution

Component
Repository

Component
Editor Control

Interface
Definition

Language (IDL)
Generator

Metadata

ASN.1-to-IDL
Translation

Operation
Repository

Execution and Test

Graphical
Presentation

Operation
Definer

Confirmations
Request

Deployment

Fig. 7. The design of the application component editor.

Application Component Editor

The component editor is not restricted to editing new and existing components, but also provides help in deployment.
There are several ways in which a completed component can be made available for inclusion in an application, such as:

� As a CORBA object

� As an OLE/COM object

� As a fragment of application source code for direct inclusion in larger application programs

� As a library routine that can be linked into a number of applications

� As part of the implementation of a managed object class’s run-time behavior.

We have concentrated on the first option. The signature editor shown in Fig. 7 can be used to define formal signatures for
entry points, using ASN.1 types for the parameters and results. This information is then available to the IDL (Interface
Definition Language) generator which produces equivalent CORBA IDL interfaces using a standard translation algorithm.8,9

These interfaces help the developer towards deployment of application components as CORBA objects. A similar process
would enable their distribution as OLE objects.

The prototype application component editor generates Smalltalk source code. In fact, we used HP Distributed Smalltalk10

to automate the entire process of deploying application components as CORBA objects. Although Smalltalk is increasingly
being used for product development, it is usually restricted to research and prototyping work. A fully fledged tool would
have to generate C or C++.

Architectural Framework
Fig. 8 shows the architectural framework upon which the three prototype tools (the MIB browser, the operation definer, and
the application component editor) are built. By building on top of this framework we were able to increase commonality in
implementation, appearance, and behavior among the tools.

Graphical Presentation
All the prototypes were implemented in VisualWorks Smalltalk, which meant we were able to use its interface construction
tools to develop the dialog boxes, menus, lists, and buttons that make up most of the tools’ interfaces. In addition, because
Smalltalk is an object-oriented language, we could subclass interfaces and specialize them for particular tasks. For example,
there are several browser-type interfaces used by all three tools in different ways. These were not implemented
independently. Instead, we implemented the common features in a superclass, which was inherited from the supplied
VisualWorks classes, and created subclasses that became the browser and viewers for displaying the results of operations
and test functions. In this way the three tools share a common look and feel because much of the code is common to them
all. Fig. 9 shows the inheritance hierarchy.

The managed objects in the MIB are organized into a tree called a containment tree because the tree’s edges represent a
containment relationship. This reflects the equipment-oriented origins of the OSI systems management standards. For
example, networks contain equipment such as multiplexers, which contain circuit boards which in turn contain software.

Article 7 October 1996 Hewlett-Packard Journal 8

Graphical Presentation

Metadata
Services

Generating

MIB
Cache

Parsing

CMIS Services

HP OpenView
Distributed Management

Fig. 8. The architectural framework for the three prototype tools.

The MIB browser enables users to navigate through the containment tree. It seemed natural to present a view of the
discovered containment tree and allow the user to interact with it via buttons and menu selections. These operations cause
the browser to execute CMIS operations to extend the browser in the way the user directs. The browser shows a view of the
tree as it is discovered during a browsing session. We felt that users would not see the larger picture if they focused only on
one managed object at a time or were presented with only a view of the path through the tree to that object. This larger
picture often provides the context that helps the user understand the smaller picture.

One lesson we learned from this prototyping experience is that more flexibility is necessary when presenting information to
the user. It is possible to discover quickly many hundreds or thousands of managed objects using the browser. This is
generally more than the user wants to deal with. Currently we advise the user to retrace steps and try again, applying more
constraints to the search. In the future we will help the user with ways to reduce the clutter on the screen rather than put the
responsibility on the user to figure out how to reduce it.

Metadata Services
Many different types of metadata are used by the tools that make up the MIB browser, including:

� GDMO, which describes the kinds of data that can be stored in the MIB and how it can be structured

� ASN.1, which describes the basic data types that can be stored

� IDL, which the application component editor generates from the signature of the components’ external
entry points

� Descriptions of how an operation should be parameterized

� Descriptions of each application component.

The tools obtain the GDMO and ASN.1 metadata via the HP OpenView metadata services. The metadata is stored in a
repository and can be queried by all of the tools. Some added services are implemented. For example, when the user wants
to find objects of a particular class or classes that are below a selected object in the MIB, the allPossibleSubordinateClasses
service provides a list of the classes that it makes sense to allow the user to select from. This list is often much shorter than
the list of all known managed object classes, making it quicker and easier to perform the action.

The CMIS requests and confirmations that flow between the browser and the MIB use the CMIP protocol. The information
passed in the messages is numeric. For example, while the user wants to refer to the network class, the
downstreamConnectivityPointer attribute, and the internalTimingSource, speech, locked, and sunday data values, the CMIP protocol will

Tree Viewer

MIB Viewer

Browser Operation
Viewer

Data
Viewer

Fig. 9. Inheritance hierarchy of the graphical presentation classes.

Article 7 October 1996 Hewlett-Packard Journal 9

expect to see the numerical values { 0 0 13 3100 0 3 1 }, { 0 0 13 3100 0 7 19 }, 0, 0, 0, and 0. Our metadata services perform
these context-sensitive translations automatically in both directions.

The MIB Cache
The MIB cache contains a subset of the managed objects contained in the MIB. This subset is built up in the cache as the
user navigates through the MIB while using the MIB browser. Operations used to handle this navigation result in responses
being sent from the MIB. A response equates to a single managed object involved in the operation. Some responses indicate
errors and others return data. Each data-bearing response contains the name and class of the responding managed object
and possibly some additional data, such as the values of attributes.

The tools parse the results and store the values in the MIB cache. This reflects what has been learned about the MIB by the
tools. The cache can be preloaded (seeded) on startup, which allows the browser to provide an initial context. When the MIB
browser or similar viewers present a picture of the MIB, they are really presenting views of information in the MIB cache.

CMIS Services
The CMIS services enable the tools to issue multiple synchronous or asynchronous CMIS requests and receive multiple
responses to each request. We built these services on Smalltalk’s support for multiple thread execution and synchronization.

Smalltalk classes that represent CMIS requests and confirmations were defined. A request object can be submitted to the
CMIS services component, causing the operation that it represents to be executed. A number of confirmations will later be
received and a confirmation object will be created for each confirmation. These confirmations are then sent to the Smalltalk
process that made the request.

HP OpenView Distributed Management Platform
The tools connect to an intermediary program called the CMIS interpreter, which in turn uses the HP OpenView Distribution
Managment Platform as the distribution mechanism and communications provider. The CMIS interpreter uses OpenView’s
standard XOM/XMP APIs to generate, send, receive, and parse CMIS requests and confirmations. Communication between
the tools and the CMIS interpreter is via an ASCII language, which is like a symbolic form of CMIS.

This arrangement provides us with the power of a symbolic, object-oriented language for rapid development while still
enabling us to make use of the communication facilities of the HP OpenView DM platform, which is designed to work with
C and C++ clients.

ASN.1 Representation
The representation of ASN.1 types and values is important to all the major architectural components. Values are passed to
and from the CMIS services, stored in the MIB cache and displayed by the graphical presentation component. ASN.1 types
are stored in the metadata’s repository described above.

Conclusion
We have described the prototype of a software environment that aids the construction of telecommunications management
applications. It is made up of three tools that together address many aspects of the development life cycle, from
investigation of the problem to the deployment of the solution.

In choosing to address application components that interact with the TMN MIB, we deliberately focused on a well-defined
subset of the overall application development area. We were then able to build tools that partially automate the task.
We believe this automation could greatly increase developer productivity. The tools’ usefulness is not restricted to the
development of applications. The MIB browser, combined with the operations and components built using the other tools,
is a powerful environment for exploring, understanding, and troubleshooting the MIB.

Acknowledgments
This work was carried out in collaboration with Simon Love and Paul Jeremaes at Hewlett-Packard Laboratories, Bristol,
England. The author and his colleagues wish to acknowledge the contribution made by Ina Heider of the Technical
University of Berlin.

Article 7 October 1996 Hewlett-Packard Journal 10

References
1. Principles for a Telecommunications Management Network, ITU-T Recommendation M.3010, 1992.
2. Principles for a Telecommunications Management Network: Overview of TMN Recommendations, ITU-T

Recommendation M.3000, 1994.
3. Information Technology—Open Systems Interconnection—Systems Management Overview, ITU-T

Recommendation X.701 (ISO/IEC 10040), 1992.
4. Information Technology—Open Systems Interconnection—Structure of Management Information:

Management Information Model, ITU-T Recommendation X.720 (ISO/IEC 10165-1), 1992.
5. Information Technology—Open Systems Interconnection—Structure of Management Information: Guidelines

for the Definition of Managed Objects, ITU-T Recommendation X.722 (ISO/IEC 10165-4), 1992.
6. Information Technology—Open Systems Interconnection—Common Management Information Service

Definition, ITU-T Recommendation X.710 (ISO/IEC 9595, 1991.
7. Information Technology—Open Systems Interconnection—Common Management Information Protocol—Part

1: Specification, ITU-T Recommendation X.711 (ISO/IEC 9596-1), 1991.
8. Inter-Domain Management: Specification Translation, Preliminary Specification, X/Open Company Ltd.,

1995.
9. Ina Heider, Encapsulation of TMN Application Components as CORBA Objects, submitted to the Technical

University of Berlin, Interdepartmental Research and Service Centre for High-Speed Networking and Multi Media
(FSP-PV/TUBKOM), 1995.

10. E. Keremetsis and I. Fuller, “HP Distributed Smalltalk: A Tool for Developing Distributed Applications,” Hewlett-

Packard Journal, Vol. 46, no. 2, April 1995, pp. 85-92.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a8.htm

Article 8 October 1996 Hewlett-Packard Journal 1

Business Process Flow Management and

its Application in the Telecommunications

Management Network

HP OpenPM is an open, enterprise-capable, object-oriented
business process flow management system that manages business
activities supporting complex enterprise processes in a distributed
heterogeneous computing environment. It is a middleware service
that represents a substantial evolution from traditional workflow
technologies.

by Ming-Chien Shan, James W. Davis, Weimin Du, and Qiming Chen

Business process reengineering is emerging as one of the crucial business strategies of the 1990s. Business process
reengineering is the fundamental rethinking and reimplementation of business processes to achieve never-before-possible
levels of quality, cost, throughput, and service. This is especially significant in an era of workforce downsizing and greater
demands for shortened time to market and faster customer response. The need for business process reengineering is
pervasive. Organizations are currently engaging in business process reengineering in many domains, including financial
services, telecom services, healthcare services, customer order fulfillment, manufacturing procedure automation, and
electronic commerce.

While business process reengineering provides a business management concept, business process flow management (BPFM)
software—or more accurately, middleware—provides the enabling technologies for business process reengineering to
support flexible solutions for the management of enterprise-wide operations, including:

� Process flow control, automation, and monitoring

� Resource allocation, authorization, and authentication

� Task initialization and data exchange

� End-to-end communication and security.

BPFM is more than just a technology. It offers an overall environment and approach to unifying, automating, and measuring
business processes. In addition, BPFM is not a technology supporting only business process reengineering. It can be used to
manage existing nonautomated legacy processes—what is often called “paving the cow paths.”

Business Process Flow Management System
At the enterprise level, the process to be managed can be very complex, spanning several organizations with multiple steps
being performed in parallel. In such cases, a BPFM system can act as the superstructure that ties together disparate systems
whose business purposes are interconnected.

A BPFM system provides procedural automation of a business process by managing the sequence of process activities and
the invocation of appropriate human, instrument, or computer resources associated with various activity steps. It involves
the high-level specification of flows, and provides the operational glue and environment support for managing and
automating the flows, recovering from failures, and enforcing consistency. A BPFM system also enforces various
administrative policies associated with resources and work.

The structure and flow of a business process managed by a BPFM system can be preplanned or ad hoc. In the case of a
BPFM system managing the process of providing telecommunications service, the flow of the process is ad hoc and depends
on the services required by a customer. However, certain aspects of the process will be preplanned and deliberately
structured. For instance, regardless of the individual services required by a customer, the process always originates in the
sales department and is always ends in the billing department.

Typically, a BPFM system:

� Provides a method for defining and managing the flow of a business process.

� Supports the definition of resources and their attributes.

� Assigns resources to work.

� Determines which next steps will be executed within a business process and when they will be executed.

Article 8 October 1996 Hewlett-Packard Journal 2

� Ensures that the business process flow continues until proper termination.

� Notifies resources about pending work.

� Enforces administrative policies such as access control.

� Tracks execution and supports user inquiry of status.

� Provides history information in the form of an audit trail for completed business processes.

� Collects statistical data for process and resource bottleneck analysis, flow optimization, and automatic
workload balancing.

HP OpenPM
HP OpenPM is an open, enterprise-capable, object-oriented BPFM system developed at HP Laboratories to manage business
activities supporting complex enterprise processes in a distributed heterogeneous computing environment. It is a
middleware service that represents a substantial evolution from traditional workflow technologies.

Given the trend towards open systems and standards, a BPFM system must coexist with and take advantage of standards-
based commercial products for network communication, legacy application invocation, and system monitoring. In particular,
the OMG’s CORBA (the Object Management Group’s Common Object Request Broker Architecture), the OSF’s DCE (the
Open Software Foundation’s Distributed Computing Environment), HP OpenView, and ISO OSI (International Standards
Organization Open Systems Interconnection) X.400 technologies are expected to play an important role in the development
of BPFM systems. HP OpenPM provides a generic framework and a complete set of services for business process flow
management using the above-mentioned standard technologies, with emphasis on performance, availability, scalability, and
system robustness.

Basically, HP OpenPM provides:

� An open system adhering to the CORBA communications infrastructure and providing a WfMC (Workflow
Management Coalition) standard interface.

� High performance as a result of optimized database access and commitment.

� Effective management with an HP OpenView-based system management environment.

� A comprehensive solution for business reengineering including an extensive set of products.

The overall architecture of an HP OpenPM system is depicted in Fig. 1. The core is the HP OpenPM engine, which supports
five interfaces for business process definition, business process execution, business process monitoring, resource and policy
management, and business object management.

A business process is specified via the process definition interface. An instance of the business process can be started,
stopped, or controlled via the process execution interface. Status information of each process instance and load information
of the entire system can be queried via the process monitoring interface. The resource and policy management interface is
used to allocate, at run time, execution resources to a task, according to the policies defined by the organization (including
authorization and authentication) and the availability of the resources. Interaction with the external world (e.g., the
invocation of an application, the control of an instrument, or the delivery of a work order to a person’s e-mail intray) is the
task of the business object management interface.

HP OpenPM Process Model
A business process is a description of the sequencing, timing, dependency, data, physical agent allocation, business rule and
organization policy enforcement requirements of business activities needed to enact work.

An HP OpenPM process is a directed graph consisting of a set of nodes connected by arcs. Fig. 2 shows an example of the
user interface. There are two kinds of nodes—work nodes and rule nodes—and two kinds of arcs—forward arcs and reset

arcs. A work node has at most one inward arc and one or more outward arcs. A rule node can have any number of inward
and outward arcs.

Work nodes represent activities to be performed external to the HP OpenPM engine. These activities include authorization,
resource allocation, the execution of business objects, and the provision of input data for the business objects and output
data from them. Rule nodes represent processing internal to the HP OpenPM engine. This processing includes decisions of
what nodes should execute next, the generation or reception of events, and simple data manipulation.

A work node is a place holder for a process activity, which is a logical representation of a piece of work contributing
towards the accomplishment of a process. A process activity is mapped to the invocation of an operation on business objects
during the execution of the process. Each process activity can represent a manual operation by a human or a computerizable
task to execute legacy applications, access databases, control instrumentation, sense events in the external world, or even
effect physical changes. A process activity definition includes a forward activity and optionally, a compensation activity, a
cancel activity, a resource management activity, timeout and deadline information, and input and output data.

Rule nodes are used to specify process flows that are more complex than a simple sequence. A rule language is used to
program the rule node decision. When executed, a rule node determines which outward arcs to fire, based on the status

Article 8 October 1996 Hewlett-Packard Journal 3

Process Status
Monitor

Process Instance
Execution

HP OpenPM Engine
• Process Definition Interface
• Process Execution Interface
• Process Monitoring Interface
• Resource and Policy

Management Interface
• Business Object

Management Interface

HP OpenPM
Database

Resource
Management

Business Object Management

Java Applets and
HTML Generator

(World-Wide Web)

Web Client
Support

Trader

Switchware

DCE, OM,
MQ, ...

EDI SAP

Legacy Applications

Process Designer

Application
Database

Application
Database

HP ORBPlus

Fig. 1. Architecture of the HP OpenPM business process flow management middleware.

SQL
OV/
DM

passed along the inward arcs, the time at which each inward arc is fired, and the process-relevant data associated with the
process instance.

Rule nodes are also used to support events. A rule node can raise events when certain conditions are met as defined by the
rules, and an event can activate rule nodes that have subscribed to receive the event.

Forward arcs represent the normal execution flow of process activities and form a directed acyclic graph. Successful
completion of a node at the source end of a forward arc triggers the starting of the node at the destination end of the forward
arc.

Reset arcs are used to support repetitions or explore alternatives in a business process. Reset arcs differ from forward arcs
in that they reach backwards in the process graph.

Rule nodes are executed each time any inward arc fires. Work nodes have states of initial or fired. When the inward arc is fired
on a work node in the initial state, the work node changes its state to fired and performs its associated activity. When the
inward arc is fired on a work node in the fired state, nothing is done.

A reset arc, together with the forward arcs between its destination and source, forms a loop. When traversed, a reset arc
causes all nodes within its loop to be reset. Resetting a fired work node changes its state to initial so that the node can be
reexecuted. Resetting an active work node cancels the current execution of the corresponding process activity and change
its state to initial.

Associated with each business process, there is a process data template defined by the business process designer. The
process data template is used by users to provide initial data for the creation of process instances. At run time, based on
the process data template and read/write lists of activities defined in a business process, HP OpenPM will generate a case

packet for each process instance to facilitate data passing between activities and the HP OpenPM engine.

Article 8 October 1996 Hewlett-Packard Journal 4

Fig. 2. An example of the HP OpenPM user interface. An HP OpenPM process is a directed

graph. There are two kinds of nodes: work nodes (square) and rule nodes (round).

HP OpenPM Process Execution
Fig. 3 shows a simplified version of the component structure of the HP OpenPM engine, which coordinates the overall
execution flow of business processes. It functions as a highly reliable, log-based state machine. The HP OpenPM engine
interfaces with external environments through a uniform CORBA-based transport interface, independent of the actual
physical dispatch of the requests.

The HP OpenPM engine launches business process instances in response to user requests. For each instance, the HP
OpenPM engine steps through the nodes according to the order specified in its business process definition. For work nodes,
the HP OpenPM engine will execute the associated process (forward) activity. For rule nodes, the HP OpenPM engine will
evaluate the rules and perform the rule actions when the rule conditions are met.

Each node transition is durably logged to facilitate forward rolling of incompleted business processes at system restart time
in the event of a system failure, or to facilitate a support activity compensation process in the case of a business activity
failure. In addition, HP OpenPM allows flexible specification of compensation scopes and actions (e.g., compensation
activity or cancel activity) to support various application needs.

In HP OpenPM, different versions of similar business processes are supported by the engine under the concept of a process

group. The user can designate a particular version as the default to be used when no specific version is requested at the time
a business process instance is created.

To monitor the progress of running business activities and support system management, the HP OpenPM engine maintains
a comprehensive log of all events and provides a native interface as well as SNMP/CMIP gateways to facilitate integration
with the HP OpenView environment. The formats and contents of the logged information can be customized to support
specific application needs.

Article 8 October 1996 Hewlett-Packard Journal 5

OpenMail Gateway

CORBA Gateway

DCE Gateway SNMP Gateway
CMIP Gateway

Native InterfaceEvent Handlers

Transport Manager
Transport
Manager

Process
Definition
Manager

Event and
Timeout
Manager

Process
Instance
Manager

Log
Manager

System and
Process Status

Manager

Transport
Manager

Process
Definition

Process Execution Process
Monitoring

Engine Xport

Queue Manager

Database Manager

HP OpenPM
Database

Object Cache

Function Call

Message Flow

Fig. 3. Block diagram of the HP OpenPM engine.

HP OpenPM Business Objects
HP OpenPM has to interact with business activities supported by various implementations encountered in real life. These
can range from manual handling by humans to automated processes executed by computers. An infrastructure is needed
to enable the effective management and invocation of these business activities.

Distributed object technologies have become the primary infrastructure for enterprise-scale distributed computing. Among
them, the OMG (Object Management Group) CORBA (Common Object Request Broker Architecture) technology has been
developed to support interoperability for application integration.

Based on CORBA technology, in HP OpenPM an abstraction called a business object is built to encapsulate whatever piece
of work each process activity has to accomplish. The wrapping code provides an IDL (Interface Definition Language)
interface and the business objects are catalogued in the HP OpenPM business object library.

A business object, as defined by the OMG, is a representation of something active in the business domain, including its
business name and definition, attributes, behavior, and constraints. It provides a uniform way to encapsulate legacy systems
and applications, and a direct mapping, in understandable business terms, between the business model and the possibly
sophisticated operational procedures of the business process system.

By representing these process activities in business objects, new business processes can be quickly created by assembling
business objects to describe business processes. The business object library avoids repetitive coding to tailor the business
activity implementation to each individual business process.

HP OpenPM Resource and Policy Management
A resource is a person, computer process, or machine that can be used to accomplish a task. A resource has a name and
various attributes defining its characteristics, such as job code, skill set, organization unit, and availability.

A policy is a set of rules that determines how resources are related to tasks within a BPFM system. One common use is for
task assignment. Policies can be used to specify which resource, under which role, is eligible or available to perform a task.
Policies are also used to ensure proper authorization and authentication.

Article 8 October 1996 Hewlett-Packard Journal 6

In HP OpenPM, the mapping between the business activity (task) specified in a business process and the business object
(resource) to be invoked is performed by the resource manager during run time as part of the execution of the business
activity. HP OpenPM allows multiple resource managers to be used to resolve a single resource assignment request; each
resolves the request at a different level within an organization.

HP OpenPM Worklist and Application Data Handlers
Two optional components that can be added into the HP OpenPM environment to facilitate the execution of business
processes are the worklist handler and the application data handler (see Fig. 4). Both components are designed to enhance
the scalability of HP OpenPM systems.

HP OpenPM
Engine

Process
Designers

Process
Monitors

Resource
Managers

Business
Objects

Worklist
Handlers

Application
Data Handlers

Process
Controllers

HP OpenPM
Database

Business
Database Resource

Data and
Rules

Fig. 4. HP OpenPM system architecture including optional elements.

The worklist handler supports both engine-push and client-pull modes to provide more freedom in task assignment.
In addition, the worklist handler can be used to support the concept of integration on demand. Based on the task
performer’s profile, the worklist handler determines and launches a specific environment for an activity at run time,
rather than hard-wiring it into the process definitions.

The application data handler supports the separation of application-specific data and process-relevant data to reduce the
amount of data flow over the network. It also provides the preparation facility for application-specific data to remove the
burden of database access from activity performers.

HP OpenPM Security
In today’s business environments, security must be implemented enterprise-wide. The security service developed by the
OMG provides authentication and encryption for HP OpenPM to prevent eavesdropping and forgery. The HP OpenPM
infrastructure components can identify each other and vouch for the credentials of end-user components.

BPFM in the Telecommunications Management Network
The Telecommunications Management Network (TMN) defined by the International Telecommunications Union is changing
the way operations support systems and business support systems solutions are being developed. The TMN architecture
separates layers of functionality and provides access by elements in any one layer to any element in the layer immediately
below. Before the introduction of the TMN model, operations support systems and business support systems solutions were
isolated from each other and could not interoperate.

The HP OpenView Distributed Management platform supports the realization of TMN operations support systems and
business support systems solutions for the TMN element management layer and network management layer (see Article 1

for a description of the TMN layers). Still needed is a middleware service supporting the service management layer and even
the business management layer of the TMN model. This need offers a great opportunity for BPFM added value. The next
section presents an example of this support.

At the service management layer, the BPFM process enabling framework is required to be able to:

� Support reengineering and transformation processes for strategic operations support systems and business
support systems.

� Integrate existing operational environments to form an enterprise hub for service management and
provisioning.

� Deploy new management services as rapidly as possible.

http://www.hp.com/hpj/oct96/oc96a1.htm

Article 8 October 1996 Hewlett-Packard Journal 7

� Monitor and measure processes.

� Tune processes to benefit from experience.

� Automate processes to reduce execution time.

The overall deployment of BPFM technology in the TMN environment is depicted in Fig. 5.

Business
Management

Layer

Service
Management

Layer

Network
Management

Layer

Element
Management

Layer

Network
ATM

Co
nf

ig
ur

at
io

n

M
an

ag
em

en
t

M
an

ag
em

en
t

M
an

ag
em

en
t

M
an

ag
em

en
t

M
an

ag
em

en
t

Fa
ul

t

Pe
rf

or
m

an
ce

A
cc

ou
nt

in
g

Se
cu

ri
ty

SONET

Agents

Business Process Flow Management

Agents

Fig. 5. Telecommunications Management Network layers, showing management

functions provided by business process flow management.

Service
Activation

Service
Creation

Service
Assurance

SONET Configuration Management Prototype
Based on an HP OpenPM system, we built a prototype to demonstrate the application of BPFM technology in the specific
domain of SONET (Synchronous Optical Network) configuration management. The prototype was a joint project between
HP Laboratories in Bristol, England and Palo Alto, California to demonstrate the middleware technologies required to
automate the processes supporting the configuration management of a SONET telecommunications network.

The scenario demonstrated by this prototype consists of the provision of a new VC4/VC12 path for customers. It goes
through several different steps for this operation: search for a new route, negotiate the service level agreement (SLA) with
the customer, configure the new path, and finally, update the SLA for this customer. The HP OpenPM process definition
supporting the process of providing this new SONET data path is sketched in Fig. 6.

W8W1 W2 W5 W6 W7

W9

W4

R6

R2

R3 R5 R7 R8

R4

Start

Set Up Next Cross-Connection

New Resources Become Available

Customer Disapprove

Raise
Event 3

Event 7
Raised

Event 3
Raised

Set CASE.new-resource=yes

Local Path Exists

T

R

X

Y

Complete

E

Wait for
Event 7

Work Node

Rule Node

Event

Forward Arc

Reset Arc

R2: If event 3 then fire arc E.
R5: If TRUE then fire arc T.
R6: If CASE.new-resource=no and

CASE.more-cross-connection-to-set=yes
then fire arc R else

R7: If CASE.customer-approval=yes then fire arc X
else fire arc Y.

Fig. 6. HP OpenView process definition for SONET configuration management.

Article 8 October 1996 Hewlett-Packard Journal 8

Searching for and configuring a new path in SONET are complex processes requiring a lot of interaction with the SONET
MIB (Management Information Base) and network elements. This type of operation is a source of errors when it is
performed manually by an operator as a set of individual, uncorrelated activities.

In the prototype, such complex operations as searching and configuring new paths are handled as business processes and
automated by an HP OpenPM engine in an environment interacting with HP OpenView DM and Oracle DBMS applications.

Depending upon the changing business needs, a customer can request to add or drop communication paths between certain
endpoints in a private virtual network (PVN). In HP OpenPM, these services can be modeled as business processes to be
executed by the service provider. Adding a new path may consist of the following activities and decision points:

1. Retrieve the customer’s profile from the customer database for customer-PVN-specific information.

2. Locate the closest add-drop multiplexers (ADMs) to the endpoints, based on the information stored in the
SONET physical configuration database.

3. Check whether fiber connections exist between the endpoints and the two end-ADMs.

4. If not, issue a request for an engineer to go onsite and physically connect the endpoints to the end-ADMs. After
the establishment of the connection, the process continues on to step 5 and an independent subprocess is
initiated to watch for resource changes.

5. Find valid routes between end-ADMs. This requires access to the routing table in the SLA database to
determine whether any valid routes exist between the two end-ADMs. Either a list of ADMs is returned
signifying the ADMs that must be configured to realize the route, or “No Route Found” is returned. For a
returned list of ADMs, this activity will then use the HP OpenView DM facility agent to collect port information
stored in the MIB to determine the available ports between the ADMs that are fibered together and can be
used to enable the path.

6. Check network element (NE) capabilities. For an ADM in the route, this activity uses the HP OpenView DM NE
agent to access the MIB information to determine whether a VC4 cross-connection can be set up in the ADM
between the selected ports of the ADM. This activity has to be executed for each ADM in the route. During
steps 5 and 6, if any additional resources become available, HP OpenPM cancels any currently running activity
and starts the process over from step 5 to consider these newly available resources.

7. Get customer’s approval of the selected configuration. Once a suitable path is identified, the customer will
review the offer, including available date, charges, quality of services (QoS), and so on. Depending upon the
business factors (e.g., cheapest service wanted), the customer may request that a new search be initiated, that
is, loop back to step 5 to find another valid route.

8. Configure the selected route. This activity is responsible for setting up the cross-connections in each ADM by
invoking the HP OpenView DM NE agent and updating the SLA database.

Acknowledgments
The authors would like to acknowledge the contributions of several individuals. John Manley and Mike Robinson provided
leadership and guidance in the development of an early version of the SONET configuration management prototype for
demonstration at Telecom ’95. Chris Whitney helped provide the SONET environment simulator. Clemens Pfeiffer
spearheaded the initial creation of HP OpenPM and helped gather the momentum needed for the project to survive. Nick
Sheard led the product development to commercialize the HP OpenPM research. Chip Vanek helped drive the design of HP
OpenPM as a major internal customer.

Bibliography
1. S. Aidarous and T. Plevyak, Telecommunications Network Management into the 21st Century, IEEE Press, 1994.
2. W. Du, C. Whitney, and M. Shan, “SONET Configuration Management with HP OpenPM,” Proceedings of the 12th

International Conference on Data Engineering, New Orleans, Louisiana, February 1996.
3. J. Davis, W. Du, E. Kirshenbaum, K. Moore, M. Robinson, M. Shan, and F. Shen, “CORBA Management of

Telecommunications Networks,” Proceedings of the Workshop on Distributed Object-Oriented Computing,
Object World Frankfurt ’95, October 1995.

4. J. Davis, W. Du, and M. Shan, “HP OpenPM: An Enterprise Process Management System,” IEEE Computer

Bulletin, June 1995.
5, W. Du, S. Peterson, and M. Shan, “Enterprise Workflow Architecture,” Proceedings of the 11th International

Conference on Data Engineering, Taipei, Taiwan, March 1995.
6. U. Dayal and M. Shan, “Issues in Operation Flow Management for Long-Running Activities,” Data Engineering

Bulletin, Vol. 16, no. 2, June 1993.

Article 8 October 1996 Hewlett-Packard Journal 9

7. M. Shan, “OpenPm: An Enterprise Business Process Flow Management System,” Proceedings of the ACM

SIGMOD International Conference on Management of Data, Montreal, Canada, June 1996.

OSF and Open Software Foundation are trademarks of the Open Software Foundation in the U.S.A. and other countries.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a9.htm

Article 9 October 1996 Hewlett-Packard Journal 1

HP OpenView Agent Tester Toolkit

In developing HP OpenView agents, a major challenge is to develop
and test both the agent and the manager simultaneously. To fill this
need, the HP OpenView Agent Tester Toolkit generates tests and
allows the developer to execute these tests individually or as a set.

by Paul A. Stoecker

HP OpenView agents can be created by telecommunications network management developers either by using tools or
by writing the code directly. The tools available include the GDMO* Modeling Toolset (see Article 4), which helps in the
design and specification of network management objects using the GDMO language, and the HP Managed Object Toolkit

(see Article 6), which accepts GDMO documents and produces C++ code to implement a default agent that meets those
specifications. Whether the developer builds an agent using these tools or writes the code by hand, one of the major
challenges is to develop and test both ends of the communications link simultaneously—the agent controlling the managed
device and the manager that sends requests to the agent and receives the responses. To fill this need, the new HP OpenView
Agent Tester Toolkit generates tests and allows the developer to execute these tests individually or as a set.

The Role of an Agent
An agent program enables other programs, called managers, to control physical and logical resources. Examples of
resources that are controlled by agents are telephone switching equipment and phone service databases. From a centralized
location, a telephone service provider can use automated processes to monitor the performance of the communications
lines, reroute traffic as necessary, and maintain the business and accounting records. Because the communication protocol
between managers and agents has been standardized, a wide area network of multivendor equipment can be efficiently
controlled from a small number of central locations.

The resources being monitored and controlled are modeled as objects called managed object classes. Managed object
classes are logical groupings of the attributes, events, and actions associated with a resource. A GDMO specification defines
the various managed object classes that make up the interface to the resource. Instances of these classes are called into
existence by sending a create request. The attribute values for an instance are accessed by issuing set and get requests to
change or retrieve the attribute values, respectively. Other message types remove an object instance, allow the agent to
notify interested parties of an asynchronous change, or cause the agent to perform some agreed-upon activity.

A collection of managed object instances and their relationships is called the containment tree. Subobjects are logically
contained or grouped within other objects. Fig. 1 depicts a portion of a containment tree. Each of the boxes in Fig. 1
represents an object instance. The label in each box identifies the object class of that instance. For example, in Fig. 1, a
fiber-optic network is composed of two network elements. In one of those network elements, the regenerator and
multiplexer sections are shown.

One of the attributes within each of the contained object instances is designated as the distinguishing attribute, and the
value of this attribute is used to uniquely distinguish that instance from all of its siblings. The containment tree is used to
uniquely identify, or name, an object instance. An object instance anywhere in the containment tree is identified by
specifying the distinguishing attribute and its value from the top of the tree down to the desired instance. The concatenation
of all of the distinguishing attributes along this naming path is called the fully distinguished name. In Fig. 1, the fully
distinguished name for the multiplexer section would consist of the sequence networkId = “net1”; elementId = 5; muxId = 56.

Agent Development
The Managed Object Toolkit saves an enormous amount of work by handling all of the overhead of decoding and validating
incoming requests, locating the selected object instance within the containment tree, and invoking an appropriate C++
method on the selected object. However, the attribute values that are set or retrieved by the initial Managed Object Toolkit
output are only internal representations. The developer is responsible for filling in empty C++ stubs to make the internal
attribute values reflect the state of external physical devices. During this coding process, it is helpful to simulate the requests
that will eventually be sent by a manager.

The Agent Tester Toolkit performs this task in two steps. First, it creates test requests from the GDMO specification. Second,
it transmits these requests over the network to the agent and receives the responses. During the development phase, these
test files can be sent individually and the responses viewed interactively. As each agent operation is implemented,

* GDMO is the ISO (International Standards Organization) Guidelines for the Definition of Managed Objects.

http://www.hp.com/hpj/oct96/oc96a4.htm
http://www.hp.com/hpj/oct96/oc96a6.htm

Article 9 October 1996 Hewlett-Packard Journal 2

the associated test requests can be added to a test suite. The accumulated tests can then be run in a batch mode to check
that previously implemented functionality still works properly. Fig. 2 depicts the sequence of steps needed to generate and
send the test requests, and shows how the Agent Tester Toolkit relates to other development tools.

networkId “net1”

network

element

elementId 2

element

muxId 56

multiplexer

rsId 40

regenerator

elementId 5

Fig. 1. A containment tree.

GDMO
Modeling
Toolset

Developer

Object
Design

GDMO
Files

Default Code

Test
Generation

Managed
Object
Toolkit

Agent

Test
ExecutionTest

Files

Agent Tester Toolkit

Network

Fig. 2. Agent development and testing tools.

Running the Agent Tester
The components of the Agent Tester Toolkit are command-line tools that are invoked in a straightforward way. For example,
ovatgen -t /tests gdmo.mib reads the GDMO description in the file gdmo.mib and generates a set of test requests stored in files
under the directory /tests. Next, tests for a particular object instance can be sent to the agent as follows:

$ ovatrun -i
>create
...
>getall
...
>mytest
...
>delete
...

The -i option to ovatrun specifies the interactive mode, in which the user can type the name of a test file in response to the
> prompt and the response from the agent is displayed immediately (shown by the dots above).

The test files represent CMIS (Common Management Information Service, ISO/IEC 9595) operations, such as create, set, get,
and so on, and are stored in a directory layout that mirrors the organization of the agent’s containment tree, with each
directory named by its associated managed object class name. At each level in the containment tree, test files are generated
that create an object instance, get all attributes, and delete the instance. If there are changeable attributes, tests are also
generated that set those attributes to new values and retrieve the changed attributes. In addition, files are generated that test

Article 9 October 1996 Hewlett-Packard Journal 3

attribute groups and actions. Documentation files describe the object identifiers used in the tests and optional features
called conditional packages.

Each test request is written in a format called ASN.1 value notation, which is a standardized format described in ISO and
ITU-T documents (8824 and X.208, respectively). ASN.1 (Abstract Syntax Notation One) is a notation for expressing the
types of the attributes and operations. For example, a test file that contains a get request to retrieve the current values of
several attributes might appear as:

GetArgument {
 –– passwordEntryManagedObjectClass
 baseManagedObjectClass {1 3 6 1 4 1 11 9 81},
 baseManagedObjectInstance distinguishedName : {
 {
 {
 –– passwordRootName
 attributeType {1 3 6 1 4 1 11 9 29},
 attributeValue Mod.RootSyntax 0
 }
 },
 {
 {
 –– loginName
 attributeType {1 3 6 1 4 1 11 9 21},
 attributeValue Mod.LoginSyntax ”paul”
 }
 }
 },
 attributeIdList {
 –– password
 {1 3 6 1 4 1 11 9 22},
 –– userID
 {1 3 6 1 4 1 11 9 23}
 }
}

In this example, the first word, GetArgument, announces the ASN.1 type whose value follows. A GetArgument is a structured
type, and in this example its fields are baseManagedObjectClass, baseManagedObjectInstance, and attribute-IdList. Lines beginning with
–– are comments inserted by the Agent Tester Toolkit generator to help the reader identify the various object identifiers

(OIDs), which are strings of digits (e.g., {1 3 6 1 4 1 11 9 23}) that uniquely identify attributes, classes, and other fields. Returning
to the GetArgument request, when sent by the Agent Tester Toolkit it asks the agent to return the current value of the password
and user ID attributes of an object of class passwordEntryManagedObjectClass. The particular instance is identified by an object
instance passwordRootName = 0, which in turn contains the desired subobject loginName = paul. A typical response would be:

GetResult {
 managedObjectClass {1 3 6 1 4 1 11 9 81},
 managedObjectInstance distinguishedName : {
 {
 {
 attributeType {1 3 6 1 4 1 11 9 29},
 attributeValue Mod.RootSyntax 0
 }
 },
 {
 {
 attributeType {1 3 6 1 4 1 11 9 21},
 attributeValue Mod.LoginSyntax ”paul”
 }
 }
 },
 currentTime ”19960327145135”,
 attributeList {
 {
 attributeId {1 3 6 1 4 1 11 9 22},
 attributeValue Mod.PasswordSyntax ”secret”
 },

Article 9 October 1996 Hewlett-Packard Journal 4

 {
 attributeId {1 3 6 1 4 1 11 9 23},
 attributeValue Mod.UserIDSyntax 4463
 }
 }
}

This response returns the requested class and instance information, and reports that the values of the two requested
attributes password and userID were secret and 4463, respectively.

It is also useful to gather as much information as possible when error conditions exist. For example, if we try to query an
object that doesn’t exist, an error is returned, letting us know what aspect of the request was rejected:

$ ovatrun –i
>getbad
–– Error: No such object instance
ObjectInstance distinguishedName : {
 {
 {
 attributeType {1 3 6 1 4 1 11 9 29},
 attributeValue Mod.RootSyntax 0
 }
 },
 {
 {
 attributeType {1 3 6 1 4 1 11 9 21},
 attributeValue Mod.LoginSyntax ”joe”
 }
 }
}

Test files are ordinary text files, and customized tests can be crafted using the generated tests as guides. Several supporting
tools are included in the Agent Tester Toolkit.

Batch Testing
After portions of the agent have been developed and the tests are working individually, it is good practice to run the tests
and check the results in an automated fashion. This is useful to monitor existing behavior of an agent as new code is added,
or to be able to repeat the testing process as new versions of the agent are developed or the agent is ported to new hardware
platforms. To this end, the Agent Tester Toolkit’s run program can execute a sequence of tests in succession. The command
is ovatrun without the -i option:

$ cd /tests
$ ovatrun

This causes the list of tests in a default test director file, batch_list, to be run and the responses stored. After all tests have
been run, the responses are compared against a set of known-good results, and summary statistics are prepared in a log file,
reporting the number of tests run, passed, and failed. The known-good result files are generally prepared by copying actual
response files that have been manually verified. A utility tool is provided that copies result files into place as known-good
comparison files. As part of the copying process, this utility removes lines that contain the current time, since this would
needlessly cause comparison failures in future test suite runs.

The test director file in its simplest form contains the names of the test files and the order in which they are to be sent.
Optional commands in this file allow for more complex situations. For example, ISO standard 10164-1 identifies situations
(object creation, object deletion, and attribute value change) in which the agent should emit an event so that all interested
managers can maintain a synchronized view of the agent’s state. To alert the Agent Tester Toolkit to expect both a response
to one of its own create, delete, or set requests and the resulting event emitted by the agent, the pair command can be used.
For example, the command pair password/create sends the request command contained in the file password/create and then
receives both the confirmation of the request and a notification that the creation has occurred. Similarly, if an isolated event
is expected, the event command can precede the name of a file with which the arriving event will be compared. Other
commands, such as a shell escape to execute any user command, allow customized testing. For example, a shell escape
allows the test designer to send a signal to the agent process to trigger some behavior, such as the sending of an event. This
simulates the behavior of the agent in actual operation where some asynchronous condition might cause the event, while
still allowing the test process to receive a predictable stream of responses from the agent. Other commands allow finer
control over the testing process. For example, a timeout value can be set that controls how long the tester will wait for a
response before aborting any single test. An example of a test director file with some of these commands included is as
follows:

Article 9 October 1996 Hewlett-Packard Journal 5

Comments begin with the ’#’ character
The following files are regular tests to get
the attributes in the already–created
Root Managed Object Class
root/passFileMOC/getall
Some of the next tests expect both a response
and an event
pair root/passFileMOC/passEntryMOC/create
root/passFileMOC/passEntryMOC/getall
pair root/passFileMOC/passEntryMOC/set
root/passFileMOC/passEntryMOC/get
pair root/passFileMOC/passEntryMOC/delete

Set the timeout to 30 seconds
timeout 30

Send a UNIX signal that triggers an event
! kill SIGINT $(AGENT_PID)
Receive the event
event root/passFileMOC/passEntryMOC/event1

Finer Control of the Generation Process
A powerful feature of the object-oriented design methodology is that the standards bodies have invested much energy into
constructing managed object class building blocks. A side-effect, however, is that in most cases the standard documents
from which specific agents inherit contain far more definitions than are needed for that agent. In the case of the Managed
Object Toolkit, this causes needless code to be generated, producing a larger agent than is required. To counteract this
effect, the Managed Object Toolkit allows developers to specify a subset of the managed object classes, so that code is
generated only for that subset. The Agent Tester Toolkit accepts the same subset specifier, and tests are generated only for
that subset.

In some cases, greater control over the nature of the generated tests is needed than simply selecting a subset of managed
object classes. An example is the containment tree example given in Fig. 1 that began with a network object as the root
node. The GDMO description of a network class might allow (as it does in ITU-T Recommendation M.3100) that network to
be decomposed into subnetworks and subsubnetworks, and so on. To allow the test designers to specify how many levels of
decomposition the agent is expecting, a containment tree specification file can be provided to the test generator. This
specification file is formatted like an outline, with the level of indentation indicating how deeply under the root node each
class is contained. For example, the containment tree in Fig. 1 would be depicted:

network
> element
> > regenerator
> > multiplexer

(Only one of the element nodes is shown. It will be explained later how to include both circuit branches.)

If the agent is expecting the network level to be expanded into network and subnetwork levels, this change can be
incorporated in the specification file by introducing another network node and indenting its children by an additional level:

network
> network
> > element
> > > regenerator
> > > multiplexer

This change adds an element to the distinguished name (corresponding to the subnetwork distinguishing attribute value) in
each test file, so such containment changes have far-reaching effects. Making such decisions early in the specification phase
saves much work compared to adjusting already generated test files.

As mentioned earlier, the tests are placed in a UNIX directory structure that parallels the containment tree structure, with
each level named by its associated managed object class name. In many cases, managed object class names can be lengthy,
and a pathname to lower-level test cases composed of a sequence of those names can be unwieldy. For example, names such
as trailTerminationPointBidirectional and connectionTerminationPointSource appear in the standards, and when several of these are
joined (as is typically done when specifying containment relationships), the combination is hard to read. To populate the
directory structure with shorter, meaningful names, a default heuristic is applied that selects a few letters from each
segment of a managed object class name. For example, a file deep in the tree described so far might be named
netw/netw/elem/mult/create. Alternatively, the test developer can override this heuristic by specifying shorter names in an
optional field in the specification file:

Article 9 October 1996 Hewlett-Packard Journal 6

network (net)
> network (subnet)
> > element (NE)
> > > regenerator (rs)
> > > multiplexer (mux)

Finally, the GDMO document doesn’t specify actual attribute values, so the containment tree’s distinguishing attributes have
to be supplied by the test designer. Once again, much work is saved by specifying these early, rather than fixing tests after
they are generated. These distinguishing attributes can be assigned in the last optional field of the specification file:

network (net) networkId=”ftc”
> network (subnet) networkId=”Bldg1”
> > element (NE2) elementId=2
> > element (NE5) elementId=5
> > > regenerator (rs) rsId=40
> > > multiplexer (mux) muxID=56

Note that by including the distinguishing attribute values, we can differentiate between the two element sibling branches.

A supporting tool called ovatct reads GDMO files and produces a skeleton specification file similar to the one above (using
the same subset selection file as the Managed Object Toolkit, if provided). More meaningful abbreviations and attribute
values can be noted in the specification file and then used as an input to the test generator to guide the production process:

ovatct gdmo.mib > spec_file
ovatgen -t /tests -f spec_file gdmo.mib

Summary
Key design goals of the Agent Tester Toolkit include supporting agent developers during the development and maintenance
phases, and confirming compliance to the GDMO specifications the agent is to implement. Also important is the ability to
generate tests iteratively for evolving designs, without time-consuming configuration changes of the test engine itself. The
Agent Tester Toolkit complements other tools in the development life cycle.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a10.htm

Article 10 October 1996 Hewlett-Packard Journal 1

Storage Management Solutions for

Distributed Computing Environments

Strategies for dealing with the vast amounts of data generated by
today’s information technology environments involve more than just
larger and larger disk drives. They include the right combination of
different storage devices to deal with offline, nearline, and online
data storage and scalable management software.

by Reiner Lomb, Kelly A. Emo, and Roy M. VanDoorn

Storage management is fast becoming one of the most important issues information technology (IT) managers face today.
With data accumulating at enormous rates, and with end users demanding faster access to more information, storage
management has moved from an operation that was done only at night to a mission-critical concern that requires full-time
attention.

Storage management consists of all the activities related to the effective deployment, accessibility, and use of stored
information across a computing infrastructure. Storage management involves several major disciplines, including backing up
and restoring data, storing data online across multiple classes of storage devices such as disks and tape, archiving data for
legal and historical purposes, and managing storage resources such as tape or optical media for optimal use. Managing these
storage disciplines takes an effective combination of organization, processes, and technologies to meet end-user
data-availability expectations.

In today’s distributed computing environments, IT managers need consistent storage management strategies and processes
across the enterprise. In addition, storage management processes cannot be separated from an integrated network and
system strategy. Therefore, IT managers need complete solutions that integrate the various storage management components
and technologies such as databases, file systems, storage peripherals, storage management applications, and network and
system management strategies.

In the past, storage management solutions have been proprietary (mainframes) or piecemeal (early client/server point
products), with specific peripherals working only with specific software and hardware. It was difficult to expand a solution
to meet the demands of rapidly growing collections of data.

In this article we will describe trends driving storage management technology and the components that make up an ideal
storage management solution. Finally, we’ll introduce HP hardware and software products, services, and partners and
describe how they work together providing storage solutions for our customers.

Storage Management Trends

Traditionally, the task of storage management was done after work hours when the system could be brought down for
storage management functions such as backup and archiving. Today, much more data is generated, and storage management
solutions need to provide much greater data availability and reliability. Complicating storage management are variables that
determine data throughput and access. These variables include disk capacity, CPU, input/output channels, device speed,
networks, and software (Fig. 1). New ways of transferring and storing large amounts of data without downtime have to be
developed.

Probably the most important driving factor in storage management today is that customers demand continuous accessibility
to huge amounts of data, very often in the terabyte range. You can see this demand occurring in the increased use of the
Internet and online services such as CompuServe and America Online, and in the emergence of new applications such as
imaging and multimedia. In the past, data accessibility was a fairly simple process when mainframes were the primary
storage devices and the only limitation was disk size. Today, the answers to storage problems cannot be provided simply
by installing a bigger disk on a central server.

As customers reengineer their businesses, many are choosing to migrate away from the mainframe via “mainframe
downsizing.” Mission-critical applications are moving to open systems, and the management of client/server workgroups
is being consolidated across LANs and WANs. An enormous amount of company-sensitive data, which used to be under
central control and located in the data center, is now distributed and available on the network (Fig. 2). Published market
numbers show that the average amount of distributed data has surpassed the average amount of data in the data center.
Companies must begin viewing storage management as integral to their network and system management solutions.

Article 10 October 1996 Hewlett-Packard Journal 2

CPU and
Software

I/O Channel
Number of Channels

Disc
Speed

LAN
WAN

Fig. 1. Components in the chain that have an impact on data throughput.

Devices/Channel

Regionally Distributed Systems

VMS

Data Center

Sensitive
Company Data

Midrange and
Mainframe Systems

MVS

AIX

Ultrix

LAN Manager

Distributed Client/Server Workgroup

HP-UX

SUN

NT

Fig. 2. Decentralized storage management committed to the same service level as a mainframe environment.

VMS or UNIX

Operating Systems
Running on Servers
and Workstations

Article 10 October 1996 Hewlett-Packard Journal 3

In addition to all the challenges raised by managing storage on distributed systems, IT managers must deal with the reality
that the amount of data being stored is outstripping the network’s capacity to handle it efficiently (Fig. 3). For example, a
company might need to back up 100 Gbytes of data in an hour. As the storage staff looks for solutions, they see processor
performance improving faster than disk performance. They also see the performance of both disks and processors
outstripping the performance of the installed network infrastructure. At the rate network infrastructure is improving, it will
be a huge challenge to catch up to processor performance.

D
at

a
Vo

lu
m

e

Archiving

Loss Protection

Space Management

Time

Fig. 3. The volume of data being stored is outstripping

the ability of network services to deal with it.

If IT managers try to win this contest with only the traditional approach of centrally stored data, they will lose the storage
management race. Instead, today’s storage management solutions must allow distributed storage management to be
performed centrally, decentrally, or in a hybrid fashion, depending on a company’s policies and needs.

To solve the growing issue of storage management, they need to understand what constitutes a storage management
solution.

Storage Management Requirements

The ideal storage management solution, which is made up of complementary software, systems, and peripherals, is
integrated, scalable, and modular, and allows the solution to be implemented in phases and expanded over time. A flexible
solution addresses both mission-critical enterprise-wide requirements and business-critical desktop needs. At the same time,
this solution must be easy to use and robust, and must provide quick, reliable access to data.

The fundamental requirement of any storage management system is to provide data accessibility to all users, regardless
of where and how the data is stored. To make data quickly accessible, yet store it efficiently, customers need a complete,
integrated set of storage management functions, including backup and recovery, archiving and retrieving, hierarchical
storage management, and media management.

In addition, an enterprise-wide storage solution must allow various storage management applications and peripherals to
manipulate and share media in a consistent manner. It must also provide an easy and standardized way to access the various
storage devices, library systems, and silos. Many companies are dedicating servers to specific tasks such as backup and
restore servers or archival and retrieval servers. A storage solution must be optimized so data is stored and moved in the
most efficient manner.

Other more generic services for storage management include a central policy definition and a single point of control.*

Lights-out operation and unattended remote backup are also key to many storage management solutions.** Storage
management solutions are most manageable when integrated into management systems such as HP OpenView, which
provides integrated network and system management services dealing with monitoring, problem management, and
configuration and change services.

Backup and Recovery
One of the most important needs in enterprise-wide storage is backup and recovery. Very early in a solution deployment, IT
managers must establish a backup and recovery policy that provides the appropriate level of data integrity. This policy must
ensure that critical data can be completely and quickly recovered from a backup even in the event of a disaster. Equally
critical is minimizing planned downtime, or completely avoiding downtime, to create a backup while keeping user
applications up and running.

* A central policy describes a set of features that allow an administrator to define policies about how distributed storage is to be managed from a central
management console. For example, an administrator defines for a networked environment which data needs to be backed up, when it will be backed up,
which device will be used for backup, and so on.

** In the IT community lights-out operation means that an IT environment can run without local operators or administrators.

Article 10 October 1996 Hewlett-Packard Journal 4

Archiving and Retrieving
The main reason for implementing archival and retrieval solutions is the need to keep data long-term and guarantee retrieval
when access is required. The data is typically copied onto a different medium such as tape or optical disk, while the original
copy is deleted from magnetic disk. Archived data is not frequently accessed, but sophisticated retrieval mechanisms need to
be available. In many cases, archiving data is required for legal or internal auditing purposes. The archiving procedure
includes storing data that logically belongs together in long-term storage, such as a finished project, a finished design, or a
client record.

Hierarchical Storage Management
Hierarchical storage management, or HSM, efficiently manages data stored on magnetic disks, optical disks, and tapes.
Depending on cost versus performance requirements, data is kept on one or more of the different storage hierarchy levels
and migrated transparently among the storage media according to customer-defined policies. An HSM system reduces
ongoing storage configuration tasks, such as moving data manually between levels in the hierarchy and subsequent
management costs. It also eliminates frequent storage maintenance, such as manually archiving files onto tape to free disk
space, and it helps reduce the need to acquire more expensive media, such as magnetic disks, for infrequently accessed data.
For example, files are migrated from disk to tape or optical storage if they are not accessed for a certain time period.
Statistical data about access patterns can help to define the right migration policy. Also, keeping statistical data about
migration patterns and creating appropriate reports will help to implement the right storage management policies for an
organization.

Media Management
The storage services discussed above handle copying or moving data onto media or retrieving data from media. Media
management, which keeps track of removable media such as tapes or optical devices, deals with the medium itself and not
with the data on the medium. A media management system protects data on the media and makes the media pools available
to storage management applications. Typical media management functions include mount and unmount media, rotate media,
and provide statistical information about the media.

Most of today’s backup, retrieval, archival, or HSM products have their own integrated media management functionality
dedicated to a specific product. Enterprise storage management solutions require generic media management services
delivered in an integrated way, so that media use can be managed and optimized across applications and systems.

Enterprise-Wide Storage Management
IT departments also require consistent and effective management capabilities for storage management across the enterprise
environment. To provide these management services, a complete storage solution must provide:

� A single point of control, which is consolidated console management, including:

� Central policy definition
� Central monitoring and problem management
� Central configuration of storage

� Multivendor availability and support

� Scalable, modular services

� Integration with an industry-standard network and system management framework

� High availability of key storage management components.

HP Storage Management Solutions

HP can offer many different solutions to an organization’s storage needs because of the combined effort of major HP
business organizations in the areas of network and system management, storage peripherals, and UNIX servers.

However, each customer’s needs for storage management solutions are different. No one vendor can provide a single
solution for every environment. Rather than create a monolithic, proprietary solution, HP is working closely with third-party
partners and many diverse HP divisions to create an open, standardized environment in which many vendors can participate
in creating solutions.

HP Storage Management Software
Central to HP’s storage management offering is the software that links all the other pieces of a storage management solution
together. HP’s two leading storage management products, HP OpenView OmniBack II and HP OpenView Omni-Storage, are
client/server solutions that give IT managers the flexibility to manage distributed storage centrally and delegate management
responsibility to distributed sites or departments. HP OmniBack II products address issues associated with data loss and
protection, and HP OmniStorage products address issues associated with space management.

Article 10 October 1996 Hewlett-Packard Journal 5

HP OpenView OmniBack II. HP offers two backup solutions: HP OpenView OmniBack II for Workgroups, which provides an
entry-level backup solution ideally suited for the workgroup environment, and HP OpenView OmniBack II, which provides
a comprehensive backup management solution to cover all sizes of environments, including the whole enterprise.

The HP OmniBack II architecture (Fig. 4) consists of three major pieces:

� Backup Manager. This module centrally administers and controls the backup environment.

� Backup Device Servers. These servers run on the system to which the backup device is connected. A backup
environment can have many backup device servers.

� Clients. All systems being backed up need a client to invoke the backup utilities.

MC/Service
Guard

Backup
Environment

Backup
Environment

Central
Management

Console

Backup
Device
Server

Backup
Device
Server

Backup
Device
Server

Backup
Manager

WANLAN

Backup Environment

Fig. 4. The backup environment and components for HP OpenView OmniBack II.

All three components can run on the same system or can be distributed. OmniBack II has its own management interface and
can be run inside or outside the HP Openview management interface.

OmniBack II is a scalable and flexible solution. Through its policy-driven, centrally managed, automated backup capabilities,
OmniBack II reliably protects data distributed throughout the entire network. Easy-to-use backup and restore functionality
provides management for desktop PCs to UNIX-based business servers. In combination with HP OpenView IT/Operations,
administration and problem management for the entire enterprise can be centralized.

Sophisticated media and device management combined with support for mainframe-class library systems, including silos,
make OmniBack II the ideal solution for data centers.*

Increased uptime for application and database servers can be achieved through high-performance offline backup, requiring
only a minimum of application downtime. This can be extended to 100% application availability through online backup of
business data.

The main features provided by OmniBack II include:

� Network backup and recovery

� Support for a broad range of devices and libraries

� Online backup of applications and databases such as SAP/R3, Oracle, and Sybase

� Sophisticated media management

� Support for major UNIX and PC platforms, including Windows NT

� High-performance backup and recovery from multiple drives in parallel, each running at its full native
throughput

� Integration with HP OpenView IT/Operations

� Integration with HP OpenView OmniStorage, HP’s hierarchical storage management solution.

HP OpenView OmniBack II for Workgroups. OmniBack II for Workgroups is a complete solution that offers everything needed
for a low-administration, automatic, unattended, and reliable network backup and recovery solution. It is targeted toward

* Silos are very large tape libraries.

Article 10 October 1996 Hewlett-Packard Journal 6

smaller multivendor computing environments without dedicated administrators. OmniBack II for Workgroups includes the
following features:

� Automated and reliable network file system backup and recovery

� Sophisticated and automated media management, autoloader support

� Support for all major UNIX and PC platforms

� Easy-to-use intuitive graphical user interface with many built-in browsers and selection lists.

HP OpenView OmniStorage. OmniStorage is HP’s hierarchical storage management solution. It offers benefits in environments
where a significant amount of data needs to be online, but where not all of the data is frequently accessed.

OmniStorage provides high-capacity, cost-effective online storage by supporting HP’s broad range of optical libraries and the
newest tape libraries. According to policies defined by the customer, files are automatically and transparently migrated
among the levels of storage hierarchy.

Fig. 5 shows a typical environment in which OmniStorage runs. The two main pieces of OmniStorage are the manager and
the clients. The manager administers and controls the storage environment, and the clients invoke the OmniStorage
functions on behalf of users.

OmniStorage
Client

OmniStorage
Client

Magnetic
Disk

Tape Storage

Optical Disk

OmniStorage
Manager

Fig. 5. The components and environment for HP OpenView Omni-Storage.

OmniStorage is tightly integrated with HP OpenView IT/Operations, providing easy administration and problem management
of multiple OmniStorage installations from a central workstation console. OmniStorage also integrates with OmniBack II for
automated backup and recovery of the HSM environment. However, OmniStorage can run as a standalone product, which
allows customers to implement storage management in phases.

OmniStorage provides optimal performance if users frequently access only a subset of the data. Additionally, Omni-Storage
can be used for databases if they are based on a file system and if major parts of the database, such as decision support
systems, are not frequently accessed.

Finally, OmniStorage provides the following features:

� Policy-driven automatic and transparent file migration

� Network migration for HP-UX* and Solaris operating systems

� Additional multivendor support through NFS

� Exceptionally fast rebuild capabilities in case of data loss

� Configurable demigration strategy

� Archival to WORM (write once, read many) disks

� Integration with HP OpenView OmniBack II

� Integration with HP IT/Operations

� Support for data warehouse environments.

HP OpenView Solutions
HP OpenView’s solutions are part of a strategy for managing multivendor networks, systems, applications, and databases
from the mainframe to the desktop PC. The HP OpenView portfolio and companies that provide network and system

Article 10 October 1996 Hewlett-Packard Journal 7

management solutions (solution partners) give IT managers the tools to control and manage all enterprise resources and
devices centrally, while reducing the cost of systems operations and administration. Besides OmniBack and OmniStorage,
more than 250 HP OpenView-based management solutions from HP and solution partners integrate with a complete set of
common management services to help customers improve service and reduce operation costs.

Central to the HP OpenView products is a user interface that provides a focal point from which the IT staff can manage
computer systems and network devices. Although control is centralized through the interface, management functions can be
distributed across the enterprise. More important, flexible, distributed interfaces allow several operators and administrators
to be involved in the process of IT management.

As an important part of the HP OpenView solutions framework, HP OpenView IT/Operations provides centralized operations
and problem management with distributed intelligence across multivendor platforms. With intelligent agents (managed
nodes) installed throughout the enterprise, IT/Operations collects up-to-date, accurate information to provide 24 × 7 (24
hours a day, seven days a week) uptime for mission-critical applications. IT/Operations-managed nodes gather information,
messages, and monitoring values from a variety of sources. Filters and thresholds ensure that only relevant information is
forwarded to the central management system and presented to the responsible IT/Operations operators.

HP and Third-Party Storage Peripherals

The HP 9000 supports mass storage products that provide online, nearline, and offline storage capabilities. The primary
differentiator among these three categories of storage is access time. A storage device is considered online when the data
access time is a fraction of a second. Nearline storage devices usually access data in the range of a few seconds to a few
minutes. Offline storage devices typically require many minutes to hours to access data. Some offline storage strategies that
require retrieval from a storage vault may take days before the data is available to the user.

HP and its partners can provide a wide variety of products to meet the individual needs of specific customer environments.
These products can be mixed and combined with HP’s storage management software to provide the needed end-user
solutions.

Online Storage
HP offers two classes of online mass storage products: single-spindle disks and disk arrays.

Single-Spindle Disks. Single-spindle disks* offered by HP are either embedded in the host systems or provided externally
within storage enclosures. These disks provide high-capacity, nonvolatile, fast-access mass storage. Single-spindle drives
operate at 7200 rpm and are currently available in capacities of 1.05 Gbytes, 2.1 Gbytes, and 4.3 Gbytes as fast/wide
differential drives.

These new drives are available as embedded devices in all of the HP 9000 servers, more than doubling the internal online
storage capacity. With the addition of the 4.3-Gbyte drive, 21.5 Gbytes of external online storage capacity can now be housed
in a single enclosure rack with up to 160 Gbytes in a 1.6-meter-high cabinet.

HP External Storage Enclosures. HP offers two families of storage enclosures for online storage: the HP 6000 SCSI mass
storage family and the HP high-availability storage system. HP’s high-availability storage system is based on a package design
that delivers flexibility and ease of use while providing critical functionality to meet the needs of the enterprise. The system
provides excellent availability, hot-pluggable power supplies, dual, power cords, cooling fans, and hot-pluggable storage
modules. The subsystem connects to the server via dual SCSI buses, increasing reliability and enabling disk mirroring in the
same enclosure.

HP Disk Arrays. A disk array is a storage system consisting of multiple disk drive mechanisms under the command of an array
controller that communicates with the host (Fig. 6).1 The key benefit of disk arrays is high data protection. Arrays also
provide high storage capacities, connectivity, and configuration flexibility.

HP currently offers three primary disk array families associated with the HP 9000 business server product line. The first
family is the HP high-availability disk arrays Model 10 and Model 20, which have a raw capacity of 6 to 80 Gbytes, support
RAID levels 1 and 5, and have dual and hot-swappable controllers and redundant cooling and power.**

The second disk array offering is EMC’s Symmetrix 3000. The Symmetrix 3000 is a high-performance integrated-cache disk
array designed for online storage. As such, the Symmetrix 3000 provides a high level of online performance, an online
capacity of up to 1.1 terabyte, and manageability and high availability to HP 9000 business servers. The result is a
mainframe-class data storage solution that is simple to manage and is delivered in a high-performing, scalable, protected,
and open architecture.

The final disk array is the fault-tolerant, self-configuring, high-performance HP disk array product with AutoRAID
technology. The HP AutoRAID disk array eliminates the need for system administrators to understand RAID levels.

* A collection of disk platters on a single spindle.

** RAID = Redundant Array of Independent Disks.

Article 10 October 1996 Hewlett-Packard Journal 8

Host
System

RAID
Disk Array
Controller

Disks

Fig. 6. A typical RAID architecture.

It dynamically adapts to the system’s workload, thus optimizing for performance and cost. Finally, it offers a raw capacity
of up to 24 gigabytes.

Nearline Storage
Most files and applications stored on hard disks are never used. Thus, the major benefit of hard disks—high-performance
access—is squandered on dormant data. Cost-sensitive environments would be better served by a hierarchical storage
management solution in which active data is stored on hard disks, while dormant or infrequently used data is cost-effectively
stored offline or nearline in media such as optical disks.

HP SureStore Optical Storage Products. HP offers a broad family of optical disk drives, ranging in capacity from 40 Gbytes to
618 Gbytes. HP offers multifunction magnetooptical drives with rewritable and WORM disks. A rewritable optical disk can
be written up to 10 million times. A WORM disk can be written once but cannot be erased or overwritten, adding a higher
degree of security.

The main features of these nearline storage devices include:

� Fast, near-hard-disk transfer and seek times

� High capacity

� Low risk—no disk crashes with optical disks

� Online data availability on a random-access device

� Online drive replacement—provides assurance that the optical system is persistently available

� Removable media

� Long life—provides more than 100 years of media life without maintenance.

Offline Storage
HP’s range of offline storage products provide high speeds and large capacities to meet the increasing demands of HP’s
high-performance workstations, network servers, and multi-user systems. HP has combined its reliable DAT products with
an industry-leading autoloader design and networking software to give customers the flexibility they need for complete
automated network backup.2

HP DAT Products. HP offers the latest DDS-2 tape drives in addition to DDS and DDS DC drives. The new DDS-2 format,
combined with 120-meter tapes, has a native mode capacity of 4 Gbytes. With data compression, customers can typically
store 8 Gbytes on a single tape. For unattended or lights-out operation, a six-cartridge autochanger is available to rotate
media for full and incremental backup and restore operations. HP also supports 8 mm and QIC tape drives. The main
features of these offline storage products include:

� Unattended backup

� High capacity with high reliability

� Easy storage in a fireproof safe according to industry standards

� DDS format can be interchanged with different manufacturers’ tape drives.

Digital Linear Tape. HP 9000 servers support the HP DLT (digital linear tape) Library 4/48. This library consists of four
Quantum DLT/4000 drives, accommodating 48 20-Gbyte tape cartridges and providing greater cartridge capacity than the
DDS format. The DLT/4000 is a 0.5-in cartridge streaming tape with a capacity of 40 Gbytes per cartridge (with 2:1
compression), and a sustained transfer rate of 3 Mbytes/s. The HP DLT Library 4/48 enables fast, unattended backup of over

Article 10 October 1996 Hewlett-Packard Journal 9

100 Gbytes of data within the brief windows of time available for backup in high-end OLTP (online transaction processing)
and decision support system environments (Fig. 7).

0 200 300 400 500 600 700100
System Capacity (Gigabytes)

10

8

6

4

2

DAT
Mechanisms

and
 Autochangers

Digital Linear Tape
(DLT) Libraries

Silos
and DLT
Libraries

Fig. 7. System capacities of different offline backup devices based on the backup

window (i.e., the amount of time available for backup).

B
ac

ku
p

W
in

do
w

 (H
ou

rs
 w

ith
 C

om
pr

es
si

on
)

The main features of digital linear tape include:

� A native-mode data transfer rate three times faster than competing technologies

� Greater media and drive head longevity

� Sophisticated tape indexing for fast-streaming file searches and restoration

� Higher compression ratio for most data types.

� Driver support provided by HP for the 18-track StorageTek tape drives (model 4781) and the 36-track
single-ended tape drives (model 4791).

3480/3490 Compatible Tape Subsystems, Libraries, and Silos. HP provides driver support for 18-track StorageTek tape drives
(Model 4781) and 36-track single-ended tape drives (Model 4791). Additionally, StorageTek offers Timberline 9490, a fast
wide implementation of the Model 4791 with a 6-Mbyte/s drive. These drives are compatible with all StorageTek silos. HP
supports StorageTek silos, including one with a 500-cartridge capacity and 90 cartridges/hour (upgradable to 1000 cartridges
and 350 cartridges/hour) and another with a 6000-cartridge capacity and 350 cartridges/hour. Both connect to other devices
and silos for easy growth.

HP 9000 Business Servers
Today’s open systems for critical business computing environments require three essential elements. First, they must provide
the storage management, data integrity, security, and manageability that information technology managers have come to
expect in running business-critical applications on centralized processing systems. Second, they must provide connectivity
and compatibility with the growing base of PC desktop users. Finally, they must offer flexibility, performance scalability, and
technical innovation to keep up with emerging application demands.

As the leading open systems platform, HP 9000 business servers offer the benefits of all three elements in a single, unified,
UNIX-based platform. The HP 9000 server platform is able to support environments of all sizes, ranging from workgroups
and replicated sites to the departments and data centers of large enterprises. For storage management, the HP 9000 business
servers offer the following features:

� Highly available and reliable systems environment

� Excellent data-movement management

� A dedicated storage server architecture that is designed for optimal database and file management

� Scalable from desktop to data center

� Hundreds of partners that ensure customizable solutions.

Article 10 October 1996 Hewlett-Packard Journal 10

Storage Solutions for the Enterprise

To help understand how to plan a complete storage management solution, we have looked at scenarios common to many
companies struggling with storage management demands. In each of the following examples, we’ll examine the needs
specific to each environment and the needs of centralized storage management, starting with small workgroups, and building
up to the enterprise level. Then we’ll show how HP and its partners can provide a unified solution.

Independent Workgroups
Many workgroups implement their own backup and recovery solutions. These solutions are typically managed by a part-time
administrator. Major requirements for backup and recovery solutions include ease of use and automation. OmniBack II for
Workgroups is the best backup and recovery product for independent workgroups. Combined with HP’s low-cost, high-
performance business servers and HP’s DDS II device libraries, backup procedures can be automated and centrally
controlled within the workgroup. OmniBack II for Workgroups provides easy and fast restoration of files and the potential to
expand the workgroup or even consolidate multiple workgroups.

Solution Elements. The storage management solution from HP for independent workgroups includes:

� HP OmniBack II for Workgroups, with easy-to-use backup and recovery software for small environments

� HP 9000 Class D and E business servers for backup

� HP’s DDS II autoloader as a cost-effective tape library.

Distributed Client/Server Workgroups
As information technology departments consolidate workgroup management, they need more centralized storage
management for distributed, heterogeneous workgroups. Two main objectives of this scenario are to increase end user
productivity by providing homogeneous and powerful storage services, and to increase operator productivity through central
control and administration of those storage services over the LAN. Significant savings can be achieved through intelligent
resource sharing and reduction of operational overhead.

OmniBack II centrally manages the complete backup and recovery process of large numbers of distributed workgroups by
dividing large numbers of backup nodes into multiple manageable backup domains. Central control can be maintained at the
enterprise console while delegating backup and recovery tasks to the individual end-user departments. OmniBack II can
automate the complete backup process of distributed client/server workgroups.

In addition, data on shared file servers and on client disks grows dramatically. Migrating infrequently accessed data onto
different storage media such as optical disks or tapes becomes an administrative nightmare. OmniStorage helps to increase
the online storage capacity of clients and servers while keeping storage administration costs under control.

Solution Elements. The storage management solution from HP for distributed client/server workgroups includes:

� Centrally controlled backup and recovery for heterogeneous workgroups with OmniBack II

� Automated backup based on HP’s DDS II Autoloader or DLT libraries

� HP 9000 business servers used as reliable and high-performing backup, restore, and HSM servers.

� Unlimited online storage based on OmniStorage combined with HP’s optical or tape libraries

� Sophisticated problem management with HP IT/Operations.

Regional Distributed Systems and WAN Connections
Companies with branch offices in the retail or financial industries, for example, often have regional distributed systems
connected via WANs. IT departments for these companies need to run the IT infrastructure of the branch offices without
operators or administrators. Remote control and administration of storage services over the WAN are essential.

OmniBack II defines each remote branch office as a backup domain with one or more local backup servers. The complete
backup and recovery administration process and control can be performed from a central console via WAN. By choosing the
appropriate devices, with sufficient capacity for each of the remote offices, the backup and recovery process for the branch
offices can be performed remotely.

Solution Elements. For regionally distributed systems the storage management solution from HP would include:

� Central backup and recovery for remote sites with OmniBack II

� HP 9000 Class D and E business servers for reliable backup and recovery at branches

� HP’s DDS II autoloader for automated tape handling

� HP IT/Operations integration of OmniBack II for sophisticated central problem management.

Article 10 October 1996 Hewlett-Packard Journal 11

Data Center and Mainframe Downsizing
When customers migrate from the mainframe to open systems, they expect the same functionality and scalability in storage
services as they had with the mainframe. The IT department is expected to continue to provide the same level of assurance
that computer services are available, reliable, and secure.

For example, a major multinational company using the HP-UX operating system with large SAP/R3 projects based on Oracle
requires efficient, reliable, unattended automated backups and restores. These backups are in the multiple terabyte-per-week
range and will move into 24 × 7 (24 hours a day, 7 days a week) operation. OmniBack II is a key part of the solution because
it gives the customer online backup by integrating with either the SAP/R3 online utility or the Oracle database utility.
OmniBack II also integrates with IT/Operations. This customer has complete centralized management of all backup sessions
and devices with the option of managing a partially or fully distributed environment.

Because of OmniBack II’s modularity and integration with other online backup services, such as those provided by Oracle
and Sybase, customers can configure OmniBack II to expand to match their growing infrastructures. Many customers also
may choose to add HP’s MC/ServiceGuard to ensure high availability of stored data.

Solutions Elements
Data centers needing high-end backup and restore are presented with the following storage management solutions from HP:

� High degree of automation with OmniBack II and StorageTek’s Tape Silo

� High backup and restore performance using StorageTek’s Timberline tape drives

� High reliability through HP 9000 systems running the HP-UX operating system

� SAP/R3 online backup with OmniBack II integration

� Enterprise monitoring and problem management through HP IT/Operations integrated with OmniBack II

� Full consulting, from investigation through implementation, by HP’s professional consulting services

� HP MC/ServiceGuard.

Data Warehousing: Scalable Storage Infrastructure
Much of a company’s data remains valuable but does not need to be online and available all the time. Typical storage
capacity requirements of data warehouses range from tens of gigabytes to several terabytes. Storage managers need the
ability to move this data cleanly from primary to secondary storage and back to primary temporarily, as needed.

The combination of HP’s business servers, magnetic disks, optical disks, and OmniStorage offer an ideal storage
infrastructure for data warehouse environments. This solution offers efficient storage hardware costs and high scalability for
large storage capacities.

The ideal ratio between magnetic and optical capacity depends on environment. Ratios in the range of 1:5 to 1:10 (i.e.,
1 Gbyte of magnetic disk capacity assigned to 5 or 10 Gbytes of optical capacity) have been implemented successfully.

Solution Elements. HP provides the following storage management solutions for data warehouses:

� Automated data migration with OmniStorage

� Online access to secondary and tertiary storage through HP’s optical and tape libraries

� High-performance data warehouse applications based on HP 9000 Class K and T business servers.

Conclusion
The ideal storage system would provide complete and integrated storage management functionality, smooth integration with
multiple file systems and databases across a broad set of operating systems, and support for a large variety of peripherals to
satisfy the needs of different storage management applications. Preventing this ideal solution from occurring are a multitude
of nonintegrated storage components from different vendors. This situation forces administrators to use single-unit solutions
for storage management, which leads to redundant and inconsistent management environments.

The HP storage architecture offers a streamlined and unified interaction among diverse storage components. This
architecture allows for customized solutions using plug-and-play components and enables different storage components to
interact consistently. For example, HP’s backup solutions are being integrated via APIs with databases such as Oracle and
Sybase.

References
1. T. Skeie and M. Rusnack, “HP Disk Array: Mass Storage Fault Tolerance for PC Servers,” Hewlett-Packard

Journal, Vol. 46, no. 3, June 1995, pp. 71-81.
2. S. Dimond, “DDS-2 Tape Autoloader: High-Capacity Data Storage in a 5 1/2-Inch Form Factor,” Hewlett-Packard

Journal, Vol. 45, no. 6, June 1994, pp. 12-20.

Article 10 October 1996 Hewlett-Packard Journal 12

HP–UX 9.* and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 branded products.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a11.htm

Article 11 October 1996 Hewlett-Packard Journal 1

An Introduction to Fibre Channel

Fibre Channel is a flexible, scalable, high-speed data transfer
interface that can operate over a variety of both copper wire and
optical fiber at data rates up to 250 times faster than existing
communications interfaces. Networking and I/O protocols, such as
SCSI commands, are mapped to Fibre Channel constructs,
encapsulated, and transported within Fibre Channel frames.

by Meryem Primmer

Fibre Channel is a standard, efficient, generic transport mechanism whose primary task is to transport data at the fastest
speeds currently achievable with the least possible delay. It is a flexible, scalable method for achieving high-speed
interconnection, communication, and data transfer among heterogeneous systems and peripherals, including workstations,
mainframes, supercomputers, desktop computers, and storage devices. It handles both networking and peripheral I/O
communication over a single channel using the same drivers, ports, and adapters for both types of communication.

Fibre Channel began in the late 1980s as part of the IPI (Intelligent Peripheral Interface) Enhanced Physical Project to
increase the capabilities of the IPI protocol. That effort widened to investigate other interface protocols as candidates for
augmentation. The first year of the project was spent looking for existing implementations to adopt, but none were found
to be sufficient. The focus then changed to develop a new implementation. That implementation became Fibre Channel.
Fibre Channel was approved as a project in 1988 by ANSI X3T9.

During the first year of investigation the ANSI working group decided to adopt a serial rather than a parallel bus interface.
IBM’s 8B/10B encode/decode scheme was adopted, and a decision was made to support both copper cable and optical fiber.
Copper can be used for low cost while optical fiber can be used for distance. Fibre is a generic term used by the Fibre
Channel standard to refer to all the supported physical media types.

The first draft of the Fibre Channel standard was developed in 1989. The standard addresses the need for very fast transfers
of large volumes of data, while at the same time relieving systems of the need to support the multitude of channels and
networks currently in use. The Fiber Channel standard covers networking, storage, and data transfers. In October 1994 the
Fibre Channel physical and signaling interface standard, FC-PH, was approved as ANSI standard X3.230-1994.

Fibre Channel is structured as a set of hierarchical functions that support a number of existing protocols, such as SCSI
(Small Computer System Interface) and IP (Internet Protocol), but it does not have a native I/O command set. It is not a
high-level protocol like SCSI, but does contain a low-level protocol for managing link operations. Fibre Channel is not aware
of, nor is it concerned with the content of the user data being transported. Networking and I/O protocols, such as SCSI
commands, are mapped to Fibre Channel constructs and encapsulated and transported within Fibre Channel frames. The
main purpose of Fibre Channel is to have any number of existing protocols operate over a variety of physical media and
existing cable plants.

Fibre Channel is a high-speed data transfer interface that can operate from 2.5 to 250 times faster than existing
communications interfaces. Its performance is both scalable and extendable and it supports multiple cost/performance
levels, from small configurations such as disk arrays and low-cost, low-performance I/O devices and small systems to
high-performance supercomputers and large distributed systems.

Fibre Channel runs at four speeds (actual data throughput): 100 megabytes per second (Mbytes/s), which translates to
1062.5 megabaud, 50 Mbytes/s or 531.25 megabaud, 25 Mbytes/s or 265.625 megabaud, and 12.5 Mbytes/s or 132.812
megabaud. A single 100-Mbyte/s Fibre Channel port can replace five 20-Mbyte/s SCSI ports, in terms of raw throughput.
Fibre Channel provides a total network bandwidth of about one gigabit per second.

Fibre Channel operates over a variety of both copper wire and optical fiber at scalable distances, as shown in Table I.
Distances are easily extendible using repeaters or switches.

Fibre Channel provides full duplex operation with separate transmit and receive fibers.

Another advantage of Fibre Channel is that it uses small connectors. The serial connectors used for Fibre Channel are a
fraction of the size of SCSI parallel connectors and have fewer pins, thereby reducing the likelihood of physical damage.
Also, depending on the topology, many more devices can be interconnected on Fibre Channel than on existing channels.

Article 11 October 1996 Hewlett-Packard Journal 2

Topologies
Fibre Channel can be implemented in three topologies to interconnect varying numbers of devices, called nodes in Fibre
Channel terminology. The topologies are point-to-point, arbitrated loop, and crosspoint switched, or fabric (a Fibre Channel
term for a network of one or more switches connecting multiple nodes). Nodes contain one or more ports, such as an I/O
adapter, through which they communicate over Fibre Channel. A generic node port is called an N_Port. The connections
between ports are called links.

Table I
Fibre Channel Media, Data Rates,

Distances, and Transmitters

Media Type
Data Rate
(Mbytes/s)

Maximum
Distance

Transmitter
Type

150-ohm Twinax or
STP

100
50
25

30 m
60 m

100 m

ECL
ECL
ECL

75-ohm Video
Coax

100
50
25
12.5

25 m
50 m
75 m

100 m

ECL
ECL
ECL
ECL

75-ohm Miniature
Coax

100
50
25
12.5

10 m
20 m
30 m
40 m

ECL
ECL
ECL
ECL

105-ohm Type-1
Shielded Twisted-
Pair Electrical

25
12.5

50 m
100 m

ECL
ECL

62.5-�m Multimode
Optical Fiber

100
 50
 25

 12.5

300 m
 600 m
 1 km

 2 km

 SW Laser
 SW Laser

LW LED
LW LED

50-�m Multimode
Optical Fiber

100
50
25
12.5

500 m
1 km
2 km

10 km

SW Laser
SW Laser
SW Laser
LW LED

9-�m Single-Mode
Optical Fiber

100
50
25

10 km
10 km
10 km

LW Laser
LW Laser

ECL = Emitter-Coupled Logic, LW = Longwave, SW = Shortwave,
LED = Light-Emitting Diode, STP = Shielded Twisted-Pair

Point-to-point (Fig. 1) is a direct channel connection between two N_Ports, typically between a processor and a peripheral
device controller. In this topology exactly two devices are connected together. No fabric elements exist and no fabric
services, such as name mapping, are necessary. Point-to-point is the default topology.

Fibre Channel arbitrated loop, or FC-AL, is a method for interconnecting from two to 126 devices through attachment points
called L_Ports in a loop configuration. L_Ports can consist of I/O devices and systems of various performance levels. FC-AL
is a low-cost solution because it does not require hubs and switches. FC-AL is a good choice for small to medium-sized
configurations and provides an upward growth path by interconnecting the loop with a fabric through an FL_Port. Arbitrated
loop is the most common Fibre Channel topology.

Fig. 2 shows the Fibre Channel arbitrated loop topology. A private loop (Fig. 2a) consists only of nodes, called NL_Ports, and
does not connect with a fabric. A public loop (Fig. 2b) connects with a fabric via an FL_Port. A disk loop uses the loop
topology to interconnect a number of high-performance disks, for example, a RAID (Redundant Array of Inexpensive Disks)
device. Fig. 3 shows an office configured in a public arbitrated loop topology, and Fig. 4 shows a private disk loop.

All devices on the arbitrated loop share the bandwidth of the loop and the management of the loop. No dedicated loop
master exists, and any node is capable of being the loop master. Which node performs the loop master functions is
negotiated when the loop is initialized.

Each node has equal opportunity to communicate with another node by arbitrating for temporary ownership of the loop. An
arbitration scheme using a fairness algorithm is used to establish a circuit between two NL_Ports on the loop before they

Article 11 October 1996 Hewlett-Packard Journal 3

Node 1
System

(b)

Server RAID Subsystem
(a)

N_Port
Tachyon

Node 2
Storage Array

N_Port
Tachyon

N_Port
Tachyon

Link

Fig. 1. (a) Two devices connected point-to-point. (b) Fibre Channel point-to-point

topology. Tachyon is HP’s gigabit Fibre Channel controller chip.

FL_Port
Fabric

Element

NL_PortNL_Port

NL_Port

NL_PortNL_Port

NL_Port NL_Port

(a)

(b)

Fig. 2. Fibre Channel arbitrated loop topology. (a) Private Loop. (b) Public loop.

can communicate. Only one communication, or loop circuit, can be active at a time. After relinquishing the loop, an NL_Port
cannot win arbitration again until all other arbitrating ports have had their turn.

The third Fibre Channel topology is crosspoint switched, or fabric. Fig. 5 shows a generic fabric topology, and Fig. 6 shows
the Fibre Channel fabric topology with a single switching or fabric element.

A fabric topology is implemented as one or more switching elements. A fabric appears as a single entity to attached nodes,
called F_Ports, even though the fabric can consist of multiple switches. Typically, a switch has from four to 16 F_Ports
attached to it. In theory, there is no size limit to the number of nodes that can interconnect in a fabric, but addressing space
limits the number to a maximum of 224. The fabric topology is good for interconnecting large numbers of devices and
complex configurations.

Article 11 October 1996 Hewlett-Packard Journal 4

To FC
Switch

with
FL_Port

Fibre
Channel
Room
Outlet

Office Area

Fig. 3. An office configured in a public arbitrated loop topology.

NL_Port

Tachyon

Copper Inside Cabinet
Disk Subsystem

Tachyon

NL_Port

NL_Port

NL_Port

NL_Port

NL_Port

NL_Port

Fig. 4. A private disk loop.

Node

Node

Node

Node

NodeNodeNode

Node

Node

Node

Fabric
Element

Fabric
Element

Fabric
Element

Fabric

Scanner
Mainframe

Super
Computer

Fig. 5. A generic fabric topology.

Article 11 October 1996 Hewlett-Packard Journal 5

N_Port
TachyonF_Port

F_Port

F_Port

F_Port

F_Port

F_Port

F_Port

F_Port

Switch

N_Port
Tachyon

N_Port
Tachyon

N_Port
Tachyon

N_Port
Tachyon

N_Port
Tachyon

Fabric Controller

Fig. 6. Fibre Channel fabric topology with a single switching element.

The structure and operations of the fabric are transparent to the F_Ports attached to it. The fabric topology is self-managed,
with the fabric performing station management functions and the routing of frames. Each port only needs to manage a
point-to-point connection between itself and the fabric.

A Layered Approach
Fibre Channel is structured as a set of five hierarchical functional levels (see Fig. 7). The user protocol being transported
over the Fibre Channel—SCSI or IPI (Intelligent Peripheral Interface), for example—is known as the upper level protocol

(ULP) and is outside the scope of the Fibre Channel layers. The Tachyon Fibre Channel protocol chip described in
Article 12 implements the FC-1 and FC-2 layers, which are shaded in Fig. 7. Tachyon also implements SCSI assists and IP
checksumming, shown as shaded boxes at the FC-4 level.

System
Interface Upper Level Protocol

Common Services

Framing Protocol/Flow Control

8B/10B Encode/Decode

266-Mbit/s 531-Mbit/s 1062-Mbit/s

IPBlock MUXHIPPIIPI-3SCSIFC-4

FC-3

FC-2

FC1

FC-0

Fig. 7. Fibre Channel’s five layers.

FC-4: The Protocol Mappings Layer. This topmost Fibre Channel level defines the mapping of the ULP interfaces to the lower
Fibre Channel levels. Fibre Channel supports multiple existing protocols, including SCSI, IP, and IPI. Each ULP supported by
Fibre Channel requires a separate FC-4 mapping and is specified in a separate FC-4 document. For example, the Fibre
Channel protocol for SCSI, which is known as FCP, defines a Fibre Channel mapping layer that uses the services of the
lowest three Fibre Channel layers to transmit SCSI command, data, and status information between a SCSI initiator and
a SCSI target. ULPs are not tied to a particular physical medium or interface. For example, SCSI is supported without
requiring a SCSI bus.

FC-3: The Common Services Layer. Nodes can be computer systems or peripheral devices. The FC-3 level defines a set of
services that are common across multiple ports of a node. The FC-3 layer is still being formulated in the ANSI committee and
no functions have been formally defined.

FC-2: The Framing Protocol Layer. This level defines the signaling protocol, including the frame and byte structure, which is the
data transport mechanism used by Fibre Channel. Included in this level is the framing protocol used to break sequences into
individual frames for transmission, flow control, 32-bit CRC generation, and various classes of service.

The FC-2 layer also handles hardware disassembly and reassembly of sequences of data. Defined in this layer are a few
built-in command primitives, called ordered sets, for handling such functions as configuration management, error recovery,
frame demarcation, and signaling between two ends of a link.

A frame (Fig. 8) is the smallest indivisible unit of user data that is sent on the Fibre Channel link. Frames can be variable in
length, up to a maximum of 2148 bytes long. Frame size depends on implementation, not hardware or software. Each frame
contains a four-byte Start of Frame delimiter, a 24-byte header, up to 2112 bytes of FC-4 payload consisting of zero to 64 bytes of
optional headers and zero to 2048 bytes of ULP data, a four-byte CRC, and a four-byte End of Frame delimiter.

http://www.hp.com/hpj/oct96/oc96a12.htm

Article 11 October 1996 Hewlett-Packard Journal 6

Start of
Frame

Frame
Header

4 Bytes 4 Bytes 4 Bytes24 Bytes 0 to 2112 Bytes

FC-4 Data Payload

0 to 64 Bytes 0 to 2048 Bytes

Optional
Headers

Data Payload
(e.g., IP Packet,
SCSI Command)

CRC End of
Frame

Fig. 8. A Fibre Channel frame.

A sequence is a set of one or more related frames. For example, a large file transfer would be accomplished in a sequence
consisting of multiple frames.

An exchange contains one or more sequences. It is comparable to a SCSI I/O process, and is the mechanism for coordinating
the exchange of information between two communicating N_Ports in a single operation.

In general, the sequence is the Fibre Channel error recovery boundary. That is, selective retransmission of frames for
error recovery is not supported in the Fibre Channel physical and signaling interface, FC-PH. If an error is detected in a
transmitted frame and the error policy requires error recovery, the sequence to which the frame belongs may be
retransmitted.

Fibre Channel provides three classes of service, which are managed by the FC-2 layer. Class 1 dedicated connection service
provides a dedicated or circuit-switched connection between two N_Ports. The connection must be established before
communication can begin and must be torn down when communication is completed. Class 1 guarantees delivery of frames
in the order in which they were transmitted. Confirmation of delivery also is provided. Class 2 multiplex service provides a
connectionless, frame-switched link. Delivery is guaranteed, but not necessarily in order if multiple routes exist through the
fabric. Class 2 also provides acknowledgement of receipt. Class 3 datagram service is a connectionless service similar to
class 2, but without confirmation of receipt. Neither delivery nor receipt order is guaranteed in class 3.

FC-1: The Encode/Decode Layer. This layer defines the transmission protocol, including the 8B/10B encode/decode scheme,
byte synchronization, and character-level error control. 8B/10B is a dc-balanced encode/decode scheme that provides good
transition density for easier clock recovery and character-level error detection. In this scheme, 8-bit internal bytes are
encoded and transmitted on the Fibre Channel link as 10-bit transmission characters. The transmission characters are
converted back into 8-bit bytes at the receiver. Using 10 bits for each character provides 1024 possible encoded values rather
than only the 256 values that are possible for 8-bit characters. Not all of the 1024 possible values are used. To maintain a dc
balance on the link, only those that contain four zeros and six ones, six zeros and four ones, or five zeros and five ones are
used. Some of the extra 10-bit characters are used for low-level link control. One special character called a comma is used
for byte synchronization.

FC-0: The Physical Layer. FC-0, the lowest of the five levels, defines the physical characteristics of the media, including cables,
connectors, drivers (ECL, LEDs, shortwave lasers, longwave lasers, etc.), transmitters, transmission rates, receivers, and
optical and electrical parameters for a variety of data rates and physical media. Reference 1 describes HP products that
implement the FC-0 layer.

Collectively, the three lowest layers constitute the Fibre Channel physical and signaling interface, FC-PH. FC-PH is
a channel/network hybrid. It supports channel interfaces for peripherals—for example, SCSI, IPI, and HIPPI
(High-Performance Parallel Interface)—as well as network protocols such as TCP/IP. FC-PH is similar enough to a network
to gain connectivity, distance, and serial interfaces, while being enough like an I/O channel to retain simplicity, reliability,
and hardware functionality.

Reference
1. J.S. Chang, et al, “A 1.0625-Gbit/s Fibre Channel Chipset with Laser Driver,” Hewlett-Packard Journal, Vol. 47,

no. 1, February 1996, pp. 60-67.

Bibliography
1. Fibre Channel—Physical and Signaling Interface (FC-PH), X3.230-1994, Rev. 4.3, American National Standards

Institute.
2. Fibre Channel—Arbitrated Loop (FC-AL), X3.272-199x, Rev. 4.5, American National Standards Institute, June

1995.
3. Fibre Channel Protocol for SCSI (FCP), X3.269-199x, Rev. 012, American National Standards Institute, May 30,

1995.
4. Fibre Channel: Connection to the Future, The Fibre Channel Association, 1994.
5. The Fibre Channel Association server URL: http://www.amdahl.com/ext/CARP/FCA/FCA.html

Article 11 October 1996 Hewlett-Packard Journal 7

http://www.hp.com/hpj/oct96/tc-10-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/oc96a12.htm

Article 12 October 1996 Hewlett-Packard Journal 1

Tachyon: A Gigabit Fibre Channel

Protocol Chip

The Tachyon chip implements the FC-1 and FC-2 layers of the
five-layer Fibre Channel standard. The chip enables a seamless
interface to the physical FC-0 layer and low-cost Fibre Channel
attachments for hosts, systems, and peripherals on both
industry-standard and proprietary buses through the Tachyon
system interface. It allows sustained gigabit data throughput at
distance options from ten meters on copper to ten kilometers over
single-mode optical fiber.

by Judith A. Smith and Meryem Primmer

Relentlessly increasing demands of computer systems continue to stress existing communication architectures to their
limits. Even as processor speeds continue to improve dramatically, they are barely keeping up with increasing numbers
of concurrently running applications and CPU-intensive applications, such as multimedia, with higher data throughput
requirements. Additionally, as the number of interconnects between systems and I/O devices continues to increase,
I/O channels become bottlenecks to system performance. A channel such as SCSI (Small Computer Systems Interface),
which operates at a maximum throughput of 20 megabytes per second in fast and wide mode, simply cannot keep pace
with ever-increasing processor speeds and data rate requirements.

Another challenge of contemporary computer systems is the trend to more widely distributed systems, which require greater
interface distances. Current parallel bus interconnects between systems and their I/O devices cannot operate over the
distances needed for true distributed systems, such as LANs spanning campus areas and high-availability applications
requiring remote mirrored disks for disaster recovery. SCSI, for example, is limited to a distance of six meters single-ended
(single wire per signal) and 25 meters differential (two wires per signal).

Current peripheral interconnect protocols are limited in the number of devices they can interconnect. For example, parallel
SCSI can connect eight devices and 16-bit wide SCSI can connect 16 devices. In addition, peripheral connectors are
becoming too large to fit into the shrinking footprints of systems and peripherals. Other SCSI limitations include half-duplex
operation only, lack of a switching capability, inability to interconnect individual buses, and the need for customized drivers
and adapters for various types of attached devices.

Computer room real estate also is becoming scarce and expensive, fueled by increasing numbers of racked computers,
insufficient room to connect desired numbers of peripheral devices, and more complex cabling. At the same time, data
storage requirements are skyrocketing as backups of terabytes of data are becoming commonplace. An additional problem
is that ever-increasing amounts of data must be backed up over too-slow LANs, making timely, low-cost backups ever more
difficult to accomplish.

For all these reasons, today’s parallel bus architectures are reaching their limits. Fibre Channel provides solutions to many
of these limitations. Fibre Channel is a forward-thinking solution to future mass storage and networking requirements.
Article 11 presents a technical description of Fibre Channel.

HP and Fibre Channel
Searching for a higher-performance serial interface, HP investigated a number of technologies. HP chose Fibre Channel over
other serial technologies because it supports sustained gigabit data transfer rates (the fastest throughput of any existing
interface), it allows networking and mass storage on the same link, and it is an open industry standard.

Although Fibre Channel faces the challenges of lack of market awareness and industry coordination and a perception that it
can be expensive, it is a stronger contender than alternative serial technologies for a number of important reasons. It is an
open industry standard and an approved ANSI standard, it has vendor support from switch, hub, and disk drive suppliers, it
is extensible, offering three topologies and four data transfer rates, and it supports both networking and mass storage.

Fibre Channel’s increased bandwidth provides distance flexibility, increased addressability, and simplified cabling. Fibre
Channel has versatility, room for growth, and qualified vendor support. Mass storage suppliers are using Fibre Channel to
interconnect subsystems and systems and to control embedded disk drives. Some midrange system (server) suppliers are
using Fibre Channel as a clustering interconnect and for specialized networking. Fibre Channel supporters and developers
include HP, Sun Microsystems, SGI, and IBM for workstations, HP, Sun, Unisys, and Compaq in the server market, HP,

http://www.hp.com/hpj/oct96/oc96a11.htm

Article 12 October 1996 Hewlett-Packard Journal 2

Seagate, Quantum, and Western Digital for disk drives, and Data General’s Clariion Business Unit, DEC, Symbios, Fujitsu,
and EMC for disk arrays, in addition to over 100 other vendors (source: The Fibre Channel Association).

Fibre Channel’s main virtue is that it works as a networking interface as well as a channel interface. Fibre Channel is one of
three complementary networking technologies that HP sees as the next step upwards in network performance (see Fig. 1).
The other two technologies are ATM (Asynchronous Transfer Mode), and IEEE 802.12, which is also known as
100VG-AnyLAN or 100BT.1 Each technology has a set of strengths and is best suited to a particular networking niche.
Combined, these technologies support all aspects of networking.

ATM

100 VG-
AnyLAN/100BT

Fibre
Channel

• Networked
Mass Storage

• Clustering
• Specialized

Networking

• Wide Area
Attach

• Backbone

• Low-Cost, High-
Performance
Client Attach

Fig. 1. HP networking technologies.

Both Fibre Channel and ATM are switched systems. They can share the same cable plant and encoding scheme and can work
together in a network (Fig. 2). However, Fibre Channel and ATM standards are evolving independently to resolve different
customer needs and objectives. ATM, which is telecommunications-based, is intended for applications that are characterized
by “bursty” types of communications, thus lending itself to WAN applications. 100VG-AnyLAN or 100BT provides low-cost,
high-performance client attachments. Fibre Channel is data communications-based and particularly well-adapted for
networked and embedded mass storage, clustering, and specialized networking applications requiring sustained data flow
rates.

ATM Port

FC Port

FC Port

ATM Port
ATM Port

ATM Port

ATM Port

ATM Port
FC Device

FC Device

FC Device

FC Port FC Port

ATM Port

FC Device

LAN
Fibre Channel Fabric Switch

WAN

Fig. 2. A network containing both Fibre Channel and ATM elements.

In addition, Fibre Channel resolves the “slots and watts” problem that current symmetric multiprocessing systems have.
For example, in 1995, three FDDI ports and six fast and wide SCSI ports were required to use fully the I/O capabilities of
a symmetric multiprocessing HP server. Fibre Channel could support these I/O services with just three slots.

HP’s vision of Fibre Channel is that it is at the core of the virtual data center containing diverse elements including:

� Fibre Channel switches connecting mainframes and supercomputers

Article 12 October 1996 Hewlett-Packard Journal 3

� Network-attached disk arrays and storage archives

� ATM, FDDI, and Ethernet routers

� Imaging workstations

� Fibre Channel arbitrated loop disks and disk arrays

� High-performance mass storage peripherals

� Low-cost clients

� Clustered systems

� Video, technical, and commercial servers.

Interoperability and the establishment of a critical mass of Fibre Channel products are the keys to the success of Fibre
Channel. HP is committed to Fibre Channel and is working with partners and standards bodies to ensure interoperability.
HP is an active participant in the ANSI Fibre Channel Working Group, the Fibre Channel Association (FCA), and the Fibre
Channel Systems Initiative, which has been integrated into the FCA. In 1994 HP purchased Canstar, a Fibre Channel switch
company, which is now HP’s Canadian Networks Operation. HP has developed Fibre Channel disk drives, gigabit link
modules and transceivers,2 system interfaces, and the Tachyon protocol controller chip, which is the subject of this article.
HP is using Fibre Channel’s versatility and speed for high-availability mass storage solutions and clustered system
topologies.

Tachyon Chip
The system interconnect laboratory of the HP Networked Computing Division became interested in Fibre Channel in 1993 as
a method of entering the high-speed serial interconnect market because Fibre Channel was the first technology that could be
used for both networking and mass storage. HP decided to develop the Tachyon chip in mid-1993 after investigating which
Fibre Channel controller chip to use in a Fibre Channel host adapter card under development for the HP 9000 Series 800
K-class server.3 The investigation determined that no available chipset would meet the functional or performance
requirements, so the decision was made to develop a controller internally.

The Tachyon chip (Fig. 3) implements the FC-1 and FC-2 layers of the five-layer Fibre Channel standard (see Article 11).
Tachyon’s host attach enables low-cost gigabit host adapters on industry-standard buses including PCI, PMC, S-Bus, VME,
EISA, Turbo Channel, and MCA. It is easily adaptable both to industry-standard and proprietary buses through the Tachyon
system interface (a generic interface) and provides a seamless interface to GLM-compliant modules and components. GLM
(gigabaud link module) is a profile defined by the FCSI (Fibre Channel Systems Initiative) and adopted by the FCA (Fibre
Channel Association). It is a subset of the Fibre Channel FC-0 layer.4

Fig. 3. HP Tachyon Fibre Channel controller chip.

Tachyon provides gigabit data throughput at distance options from 10 meters on copper to 10 kilometers over single-mode
optical fiber. Tachyon host adapters save system slots, minimizing cost and cabling infrastructure.

Tachyon achieves high performance and efficiency because many of its lower-level functions are implemented in hardware,
eliminating the need for a separate microprocessor chip. Functions such as disassembly of outbound user data from

http://www.hp.com/hpj/oct96/oc96a11.htm

Article 12 October 1996 Hewlett-Packard Journal 4

sequences into frames, reassembly of inbound data, flow control, data encoding and decoding, and simple low-level error
detection at the transmission character level are all built into hardware. One set of hardware supports all upper-level
protocols. Errors and exceptions are offloaded to host-based upper-level software to manage.

Tachyon High-Level Design Goals
The Tachyon designers made several high-level design decisions early in the project. The primary design goal was to deliver
sustained, full-speed gigabit performance while imposing the minimum impact on host software overhead. To accomplish
this, Tachyon supports all Fibre Channel classes of service (see Article 11), automatically acknowledges inbound frames for
class 1 and class 2, handles NL_Port and N_Port initialization entirely in hardware, manages concurrent inbound and
outbound sequences, and uses a messaging queue to notify the host of all completion information. To offload networking
tasks from hosts, Tachyon is designed to assist networking protocols by supporting IP checksums and two different modes
for splitting network headers and data.

The second major design goal was that Tachyon should support SCSI encapsulation over Fibre Channel (known as FCP).
From the beginning of the project, Tachyon designers created SCSI hardware assists to support SCSI initiator transactions.
These hardware assists included special queuing and caching. Early in the design, Tachyon only supported SCSI initiator
functionality with its SCSI hardware assists. It became evident from customer feedback, however, that Tachyon must
support SCSI target functionality as well, so SCSI target functionality was added to Tachyon SCSI hardware assists.

Tachyon Feature Set
To take advantage of Fibre Channel’s high performance, Tachyon:5

� Provides a single-chip Fibre Channel solution.

� Manages sequence segmentation and reassembly in hardware.

� Automatically generates acknowledgement (ACK) frames for inbound data frames.

� Automatically intercepts and processes ACK frames of outbound data frames.

� Processes inbound and outbound data simultaneously with a full-duplex architecture.

� Allows chip transaction accesses to be kept at a minimum by means of host-shared data structures.

To provide the most flexibility for customer applications, Tachyon:

� Supports link speeds of 1063, 531, and 266 Mbaud.

� Supports Fibre Channel class 1, 2, and 3 services.

� Supports Fibre Channel arbitrated loop (FC-AL), point-to-point, and fabric (crosspoint switched) topologies.

� Provides a glueless connection to industry-standard physical link modules such as gigabaud link modules.

� Supports up to 2K-byte frame payload size for all Fibre Channel classes of service.

� Supports broadcast transmission and reception of FC-AL frames.

� Allows time-critical messages to bypass the normal traffic waiting for various resources via a low-latency,
high-priority outbound path through the chip.

� Provides a generic 32-bit midplane interface—the Tachyon system interface.

To provide support for customer networking applications, Tachyon:

� Manages the protocol for sending and receiving network sequences over Fibre Channel.

� Provides complete support of networking connections.

� Computes exact checksums for outbound IP packets and inserts them in the data stream, thereby offloading
the host of a very compute-intensive task.

� Computes an approximate checksum for inbound IP packets that partially offloads the checksum task from the
host.

� Contains hardware header/data splitting for inbound SNAP/IP sequences.

To provide support for customer mass storage applications, Tachyon:

� Supports up to 16,384 concurrent SCSI I/O transactions.

� Can be programmed to function as either an initiator or a target.

� Assists the protocol for peripheral I/O transactions via SCSI encapsulation over Fibre Channel (FCP).

To reduce host software support overhead, Tachyon:

� Allows chip transaction accesses to be kept at a minimum by means of host-shared memory data structures.

� Manages interrupts to one or zero per sequence.

� Performs FC-AL initialization with minimal host intervention.

To provide standards compliance, Tachyon:

� Complies with Fibre Channel System Initiative (FCSI) profiles.

http://www.hp.com/hpj/oct96/oc96a11.htm

Article 12 October 1996 Hewlett-Packard Journal 5

� Complies with industry-standard MIB-II network management.

To ensure reliability, Tachyon:

� Supports parity protection on its internal data path.

� Has an estimated MTBF of 1.3 million hours.

Fabrication
Tachyon is fabricated by LSI Logic Corporation using a 0.5-�m 3.3V CMOS process, LCB500K. The chip dissipates just under
4 watts and is contained in a 208-pin MQUAD package with no heat sink.

Tachyon Functional Overview

The host interface of the Tachyon chip is a set of registers used for initialization, configuration, and control and a set of data
structures used for sending and receiving data and for event notification. This interface is very flexible and allows the
customer to design an interface to Tachyon that best meets the capability, performance, and other requirements of a specific
application.

Transmitting a Fibre Channel Sequence
To transmit an outbound sequence (see Fig. 4), the host builds several data structures and sets up the data to be transmitted.
A data structure called the outbound descriptor block is built first. The outbound descriptor block provides much of the
information Tachyon needs to send a sequence. The outbound descriptor block points to a data structure called the extended

descriptor block, which points to data buffers containing the data for the sequence. The host then creates the Tachyon
header structure, which contains important Fibre Channel-specific information such as which Fibre Channel class of service
to use during sequence transmission. The host sets up the outbound descriptor block to point to the Tachyon header
structure. The host then adds the outbound descriptor block to the outbound command queue.

Outbound
Message
Channel

Inbound
Message
Channel

ISM OSM

Frame Manager

ACK
FIFO

Outbound
Frame FIFO

Inbound
Data FIFO

IMQ Entry

IMQ Entry

IMQ Entry

OCQ Entry
(ODB)

OCQ Entry
(ODB)

OCQ Entry
(ODB)

IMQ OCQ Buf_Addr

Buf_Len

Buf_Addr

Buf_Len

Buf_Addr

Buf_Len

Buf_Addr

Buf_Len

Seq D_ID

Tot_Len

CNTL

Cs_S

Trans_ID

Hdr_Addr

Hdr_Len

EDB_Addr

Reserved
SOF, etc.

R_CTL D_ID

VC_ID S_ID

Type F_CTL

Seq_

OX_ID RX_ID

RO

Optional
Portion

Data

EDB Data Buffers

Tachyon
Header

StructureODB

Host-Based Data Structures

Tachyon

Link

= Inbound Message Queue
= Outbound Command Queue
= Outbound Descriptor Block
= Extended Descriptor Block
= Inbound Sequence Manager
= Outbound Sequence Manager

IMQ
OCQ
ODB
EDB
ISM
OSM

A/L Pair

Additional
A/L Pairs

Data

Data

Data

Fig. 4. Transmit process overview.

Article 12 October 1996 Hewlett-Packard Journal 6

When Tachyon sees the new entry in the outbound command queue, it gets the outbound descriptor block from host memory
via DMA. As Tachyon reads the Tachyon header structure to send the first frame of the sequence, it copies the header
structure to internal registers for use in generating Fibre Channel headers for subsequent frames.

If this is class 1 service, after sending the first frame, Tachyon waits until it receives the ACK for the first frame of the
sequence before continuing. Tachyon then inserts an identifier value, called the responder exchange identifier (RX_ID),
which is returned in the ACK, into the Fibre Channel header on all subsequent frames of this sequence. Tachyon continues to
transfer data from the host via DMA in frame-sized blocks and sends the frames with headers automatically generated from
the previously stored header.

Tachyon keeps track of the frame count for the sequence. The Fibre Channel header for each frame contains an incremental
count of the number of frames transmitted for the sequence along with the relative position of that frame within the
sequence. As Tachyon sends the frames for the sequence, it also tracks flow control for the sequence using a Fibre Channel
flow control method called end-to-end credit (EE_Credit). EE_Credit determines the number of frames that Tachyon can send to
the remote destination without receiving an ACK. Each time Tachyon sends a frame, EE_Credit decrements. Each time Tachyon
receives an ACK from the destination, EE_Credit increments. If EE_Credit goes to zero, Tachyon stops transmitting frames and
starts a watchdog timer called the ED_TOV timer (error detect timeout value). The ED_TOV timer counts down until ACKs arrive.
If ACKs arrive, Tachyon resumes transmission. If the ED_TOV timer expires, Tachyon sends a completion message to the host
indicating that the sequence has timed out.

Once Tachyon has transmitted the last frame of a sequence and received all of the ACKs for the sequence, it sends a
completion message to the host via the inbound message queue. This tells the host that it can deallocate all memory
associated with this outbound descriptor block and inform any processes waiting on its completion. If a sequence terminates
abnormally, Tachyon will notify the host of the error in the completion message.

Receiving a Fibre Channel Sequence
Fig. 5 shows an overview of the receive process. To enable Tachyon to receive data, the host first supplies Tachyon with two
queues of inbound buffers. Two inbound queues are required because single-frame sequence reception and multiframe
sequence reception are handled independently. Tachyon needs minimal resources to receive a single-frame sequence, but for
multiframe sequences the chip needs to use additional resources to manage the reassembly of frames. Because of this
resource demand, Tachyon can reassemble only one incoming multiframe networking sequence at a time. Tachyon supports
the reception of single-frame sequences while reassembling a multiframe sequence. This process allows a host to receive
short sequences while Tachyon is reassembling a longer incoming sequence.

Single-Frame Sequence Reception. The hosts uses the single-frame sequence buffer queue to inform Tachyon of the location
of host-based buffers that Tachyon should use to receive sequences contained within a single frame. As Tachyon receives a
single-frame sequence, it places the entire sequence, which includes the Tachyon header structure followed by the sequence
data, in the buffer defined by the address from the single-frame sequence buffer queue. If the sequence is larger than one
buffer size, the remaining data of the sequence is packed into the next buffers, as required, until all of the sequence is stored.
Next, Tachyon sends an inbound_sfs_completion message to the host via the inbound message queue and generates an interrupt
to the host.

Multiframe Sequence Reception. The host uses the multiframe sequence buffer queue to inform Tachyon of the location of
host-based buffers that Tachyon should use to receive and reassemble incoming data that has been split into an arbitrarily
large number of frames. When the first frame of a new sequence arrives, Tachyon copies the Tachyon header structure into
the beginning of the next available multiframe sequence buffer. Tachyon packs the data payload of the frame into the next
buffer following the buffer with the Tachyon header structure. As each new frame arrives, Tachyon discards the Fibre
Channel header information and sends the data to the host. Tachyon packs this data into each of the buffers on the
multiframe sequence buffer queue, obtaining a new buffer when the current buffer is full, until the entire sequence is stored.
Once all the frames arrive and the sequence is reassembled in memory, Tachyon notifies the host that the entire sequence
has been received by generating a completion message and placing it into the inbound message queue. Tachyon then
generates a host interrupt to process the entire sequence.

Tachyon can also handle multiframe sequences that are received out of order. When Tachyon detects an out-of-order frame,
Tachyon generates a completion message that indicates the in-order portion of the sequence and the last sequence buffer
used. Tachyon passes the completion message to the inbound message queue, but does not generate an interrupt until all
frames of the sequence are received. Next, Tachyon obtains the next available sequence buffer and copies the Tachyon
header structure of this out-of-order frame into it. Then, into the next sequence buffer, it copies the data payload of this
out-of-order frame. At this point, if the frames that follow the out-of-order frame are in order, Tachyon discards the Tachyon
header structures and packs the data into the host buffers. Tachyon packs this data into each of the buffers on the
multiframe sequence buffer queue, obtaining a new buffer when the current buffer is full, until the entire sequence is stored.
If another frame arrives out of order from the previous out-of-order portion, Tachyon generates a new completion message
and the process is repeated. When it receives the final frame of the sequence, Tachyon passes it to the host and generates a
completion message. At this time, Tachyon generates a host interrupt to process the entire sequence. With the information in
each of the Tachyon header structures that Tachyon passed to the host for each in-order portion and the information in the
completion messages, the host has enough information to reorder the out-of-order multiframe sequence.

Article 12 October 1996 Hewlett-Packard Journal 7

SFS or MFS
Buffer

Channel

Inbound
Message
Channel

ISM OSM

Frame Manager

ACK
FIFO

Outbound
Frame FIFO

Inbound
Data FIFO

IMQ Entry

IMQ Entry

IMQ Entry

Queue
Entry

Queue
Entry

Queue
Entry

IMQ
SFSBQ or
MFSBQ

Buf_Addr

Buf_Addr

Buf_Addr

Buf_Addr

Buf_Addr

Buf_Addr

Buf_Addr

Data

Data Buffers

SFSBQ or
MFSBQ
Entries

Host-Based Data Structures

Tachyon

= Inbound Message Queue
= Single-Frame Sequence

Buffer Queue
= Multiframe Sequence

Buffer Queue
= Inbound Sequence Manager
= Outbound Sequence Manager

IMQ
SFSBQ

MFSBQ

ISM
OSM

Inbound
Data

Manager

Data

Data

Data

Data

Link

Buf_Addr

Fig. 5. Receive process overview.

Tachyon Internal Architecture
Tachyon’s internal architecture is illustrated in Fig. 6. Each functional block in the architecture is described below.

Outbound Message Channel. The outbound message channel block manages the outbound command queue. It maintains the
outbound command queue as a standard circular queue. The outbound message channel informs the outbound sequence
manager block when an outbound command is waiting in host memory to be processed. When requested by the outbound
sequence manager, the outbound message channel then reads one 32-byte entry from the outbound command queue and
delivers it to the outbound sequence manager block for processing.

High-Priority Message Channel. The high-priority message channel block manages the high-priority command queue. The host
can use the high-priority channel to send urgent single-frame sequences that need to bypass the dedicated outbound
command queue. For example, the host could use the high-priority command queue to send special Fibre Channel error
recovery frames that might not otherwise be transmitted because of a blocked outbound command queue. The high-priority
message channel maintains the high-priority command queue as a standard circular queue. The high-priority message
channel informs the outbound sequence manager block when a high-priority outbound command is waiting in host memory
to be processed. When requested by the outbound sequence manager, the high-priority message channel reads one entry
from the high-priority command queue and delivers it to the outbound sequence manager block for processing.

Outbound Block Mover. The outbound block mover block’s function is to transfer outbound data from host memory to the
outbound sequence manager via DMA. It takes as input an address/length pair from the outbound sequence manager block,
initiates the Tachyon system interface bus ownerships, and performs the most efficient number and size of transactions on
the Tachyon system interface bus to pull in the data requested.

Outbound Sequence Manager. The outbound sequence manager block is responsible for managing all outbound sequences.
The outbound message channel, the high-priority message channel, and the SCSI exchange manager notify the outbound
sequence manager block when they have data to send. The outbound sequence manager must determine which channel has
priority. High-priority sequences have first priority, but the outbound sequence manager determines priority between

Article 12 October 1996 Hewlett-Packard Journal 8

Outbound
Message
Channel

Inbound
Data

Manager

ISM

OSM

ACK
FIFO

Outbound
Frame FIFO

Inbound
Data FIFO

Inbound
Block
Mover

Inbound
Message
Channel

SFS
Buffer

Channel

MFS
Buffer

Channel

High Priority
Message
Channel

Outbound
Block
Mover

Register
Block

SCSI
Read/Write

Channel

SCSI
Buffer

Manager

SCSI
Exchange
Manager

Tachyon

ACKs

ACKs

IMQ SFSBQ MFSBQ SEST OCQ HPCQ

Outbound
Data

Inbound
Data

Host-Based Data Structures

Frame Manager

OS Processor
CRC Checker

Loop State
Machine

Elastic Store/
Smoothing

20B/16B
Decoder

10B/20B
DeMUX

OS/CRC
Generator

16B/20B
Encoder

20B/10B MUX

Link

= Inbound Message Queue
= Single-Frame Sequence Buffer Queue
= Multiframe Sequence Buffer Queue
= SCSI Exchange State Table
= Outbound Command Queue
= High-Priority Command Queue

IMQ
SFSBQ
MFSBQ
SEST
OCQ
HPCQ

= Small Computer System Interface
= Inbound Sequence Manager
= Outbound Sequence Manager
= Ordered Set
= Cyclic Redundancy Check

SCSI
ISM
OSM
OS
CRC

Fig. 6. Tachyon internal architecture.

Article 12 October 1996 Hewlett-Packard Journal 9

networking and SCSI transactions using a fairness algorithm. Once priority is determined, the outbound sequence manager
programs the outbound message channel to retrieve a data sequence from host memory and segment it into individual
frames for transmission. The outbound sequence manager transmits the sequence, performs a TCP or UDP-type checksum
on the sequence, verifies that each frame is acknowledged by the receiving node, handles errors if required, and sends a
completion message to the host through the inbound message channel.

Outbound Frame FIFO. The outbound frame FIFO buffers data before transmission to prevent underrun. This FIFO is sized
to hold one maximum-size frame. As Tachyon sends the current frame onto the link, the outbound frame FIFO is
simultaneously filled with the next frame, maximizing outbound performance and reducing latency.

ACK FIFO. The ACK FIFO holds Fibre Channel class 1 and class 2 ACKs until they can be sent out by the frame manager.

Frame Manager. The frame manager is Tachyon’s interface to the physical link module. The frame manager implements the
N_Port state machine described in the FC-PH specification and the loop state machine described in the FC-AL specification.
The frame manager can be configured to support link speeds of 1063, 531, and 266 megabits per second. It also implements
initialization in hardware for both NL_Ports and N_Ports.

The frame manager implements portions of the FC-1 and FC-2 specifications. It is responsible for the FC-1 functions of
transmitting and receiving Fibre Channel frames and primitives. It calculates and verifies the CRC for frame data, checks
parity of the transmit data, and generates parity for the receive data. It generates primitives, encodes and receives Fibre
Channel frames and primitives, decodes 10-bit or 20-bit physical link module data, and implements the running disparity
algorithm in FC-1. The frame manager can be configured to generate interrupts to the host when certain link configuration
changes occur to which the host must respond. The interrupt process occurs as part of N_Port initialization and loop
initialization and any time the link has been disrupted.

The ordered set and CRC generator encapsulates data into FC-1 frames, generates a 32-bit cyclic redundancy check (CRC),
writes it into the frame, and passes the encapsulated data to the 16B/20B encoder. The 16B/20B encoder converts outbound
16-bit-wide data into two 8-bit pieces, each of which is encoded into a 10-bit transmission character using the 8B/10B
encoding algorithm.

The 20B/10B multiplexer is responsible for selecting the proper width, either 10 bits or 20 bits, of the data path for the
specific type of physical link module being used. The data width and speed are specified by the parallel ID field of the
physical link module interface.

The 10B/20B demultiplexer is responsible for receiving incoming encoded data, either 10 bits wide or 20 bits wide, from the
physical link module and packing it into 20 bits for decoding. The data width and speed are specified by the parallel ID field
of the physical link module interface.

The 20B/16B decoder is responsible for converting 20-bit-wide data received from the 10B/20B demultiplexer into two 8-bit
data bytes.

The elastic store and smoothing block is responsible for retiming received data from the receive clock to the transmit clock.
The elastic store provides a flexible data FIFO buffer between the receive clock and transmit clock domains. Receiver
overrun and underrun can be avoided by deleting and inserting duplicate primitives from the elastic store as needed to
compensate for differences in receive clock and transmit clock frequencies (within specifications).

The ordered set processor and CRC checker block is responsible for detecting incoming frame boundaries, verifying the
cyclic redundancy check, passing the data to the inbound FIFO, and decoding and recognizing primitives.

Inbound Data FIFO. The inbound data FIFO buffers frame data while the frame manager verifies the CRC. It also serves as
high-availability temporary storage to facilitate the Fibre Channel flow control mechanisms. This FIFO is sized to hold a
maximum of four 2K-byte frames (including headers).

Inbound Sequence Manager. The inbound sequence manager is responsible for receiving and parsing all link control and link
data frames. It interacts with the SCSI buffer manager block to process SCSI frames. The inbound sequence manager block
is also responsible for coordinating the actions taken when a link reset is received from the frame manager block and for
passing outbound completions to the inbound data manager block. The inbound sequence manager also manages class 1
Fibre Channel connections.

Inbound Data Manager. The inbound data manager routes incoming frames to their appropriate buffers in host memory,
transferring SCSI FCP_XFER_RDY frames to the SCSI exchange manager, sending completion messages to the inbound message
queue, and sending interrupts to the interrupt controller inside the inbound message channel.

Inbound Block Mover. The inbound block mover is responsible for DMA transfers of inbound data into buffers specified by the
multiframe sequence buffer queue, the single-frame sequence buffer queue, the inbound message queue, or the SCSI buffer
manager. The inbound block mover accepts an address from the inbound data manager, then accepts the subsequent data
stream and places the data into the location specified by the address. The inbound block mover also accepts producer index
updates and interrupt requests from the inbound message channel and works with the arbiter to put the interrupt onto the
Tachyon system interface bus.

Article 12 October 1996 Hewlett-Packard Journal 10

Inbound Message Channel. The inbound message channel maintains the inbound message queue. This includes supplying the
inbound data manager with the address of the next available entry in the inbound message queue and generating a
completion message when the number of available entries in the inbound message queue is down to two.

The inbound message channel also generates interrupts for completion messages, if necessary, and handles message and
interrupt ordering. The completion message must be in the host memory before the interrupt. The inbound message channel
also handles interrupt avoidance, which minimizes the number of interrupts (strobes on the INT pin on the Tachyon system
interface bus) asserted to the host for each group of completions sent to the host.

Single-Frame Sequence Buffer Channel. The inbound single-frame sequence buffer channel manages the single-frame sequence
buffer queue. It supplies addresses of empty single-frame sequence buffers to the inbound data manager and generates a
completion message when the supply of single-frame sequence buffers runs low.

Multiframe Sequence Buffer Channel. The inbound multiframe sequence buffer channel manages the multiframe sequence
buffer queue. It supplies addresses of empty multiframe sequence buffers to the inbound data manager and generates a
completion message when the supply of multiframe sequence buffers runs low.

SCSI Buffer Manager. The SCSI buffer manager is responsible for supplying the inbound data manager with addresses of
buffers to be used for inbound SCSI data frames. The SCSI buffer manager maintains a cache of 16 unique SCSI descriptor
blocks. Each block contains eight SCSI buffer addresses. Depending upon the direction of the exchange, the originator
exchange identifier (OX_ID) or the responder exchange identifier (RX_ID) of the current frame is provided by the inbound data
manager block and is used to point to the correct entry in the SCSI exchange state table.

SCSI Exchange Manager. In conjunction with the SCSI exchange state table data structure, the SCSI exchange manager
provides Tachyon with the hardware assists for SCSI I/O transactions. It converts SCSI exchange state table entries to
outbound descriptor block format for the outbound sequence manager block’s use. The SCSI exchange manager accepts
SCSI outbound FCP_XFER_RDY frames from the inbound data manager block. It then uses the OX_ID or RX_ID given in the frame
as an offset into the state table, reads the entry, and builds the outbound descriptor block.

Register Block. The register block consists of control, configuration, and status registers. These registers are used for
initialization, configuration, control, error reporting, and maintenance of the queues used to transfer data between Tachyon
and the host. Each register is 32 bits wide and may be readable or both readable and writable by the host depending upon its
function.

SCSI Read/Write Channel. The SCSI read/write channel manages requests from the SCSI exchange manager and interfaces to
the Tachyon system interface arbiter block.

Tachyon SCSI Hardware Assists
Tachyon supports SCSI I/O transactions (exchanges) by two methods. The first method uses host-based transaction
management. In this method, the host transmits and receives the various sequences using the general transmit and receive
processes. By using the host-based transaction management method, Tachyon reassembles only one SCSI unassisted
multiframe sequence at a time. The second method uses Tachyon’s SCSI hardware assists. With this method, Tachyon assists
the host transaction management through the use of a shared host data structure called the SCSI exchange state table.

By using Tachyon’s SCSI hardware assists, the host can concurrently reassemble up to 16,384 SCSI assisted sequences.
Tachyon maintains an on-chip cache for up to 16 concurrent inbound transactions. Tachyon uses a least recently used

caching algorithm to allow the most active exchanges to complete their transfers with the minimum latency.

The protocol for SCSI encapsulation by Fibre Channel is known as FCP. Fig. 7 shows an overview of the FCP read exchange
and Fig. 8 shows an overview of the FCP write exchange. The exchanges proceed in three phases: command, data, and
status.

SCSI Exchange State Table. The SCSI exchange state table is a memory-based data structure. Access is shared between
Tachyon and the host. The SCSI exchange state table is an array of 32-byte entries. The starting address of the table is
programmable and is defined by the SCSI exchange state table base register. The length of the table is also programmable
and is defined by the SCSI exchange state table length register. Each used table entry corresponds to a current SCSI
exchange, or I/O operation. Each entry contains two kinds of information: information supplied by the host driver for
Tachyon to manage the exchange, and information stored by Tachyon to track the current state of the exchange. For
initiators in SCSI write transactions, the outbound SCSI exchange state table entries contain information indicating where
outbound data resides in memory and what parameters to use in the transmission of that data on the Fibre Channel link.
For initiators in SCSI read transactions, the inbound SCSI exchange state table entries contain information indicating where
inbound data is to be placed in memory. SCSI exchange state table entries are indexed by an exchange identifier (X_ID)
—either the originator exchange identifier (OX_ID) or the responder exchange identifier (RX_ID). In an initiator application,
the OX_ID provides the index into the SCSI exchange state table. In a target application, the RX_ID provides the index into the
SCSI exchange state table.

Article 12 October 1996 Hewlett-Packard Journal 11

The initiator host se-
lects a valid OX_ID
value.

The initiator Tachyon
uses inbound SCSI
hardware assists.

This is an optional
step for an initiator for
FCP read.

The target host
selects a valid
RX_ID value.

SCSI hardware
assists are not
used.

Data Phase

Status Phase

Command Phase

Initiator Fabric Target

FCP_CMND, EC=0

FCP_XFER_RDY,
EC=1

FCP_DATA, EC=1

FCP_RSP_, EC=1

FCP_DATA, EC=1

FCP_DATA, EC=1

ACK

ACK

ACK

ACK

ACK

ACK

EC = Exchange Context bit

Fig. 7. FCP read exchange overview.

The initiator host se-
lects a valid OX_ID
value.

The initiator Tachyon
uses outbound SCSI
hardware assists.

The target’s RX_ID
value is copied.

The target host
selects a valid
RX_ID value.

The target Tachyon
uses inbound SCSI
hardware assists.

Data Phase

Status Phase

Command Phase

Initiator Fabric Target

FCP_CMND, EC=0

FCP_XFER_RDY,
EC=1

FCP_DATA, EC=0

FCP_RSP_, EC=1

ACK

ACK

ACK

ACK

ACK

ACK

EC = Exchange Context bit

FCP_DATA, EC=0

FCP_DATA, EC=0

Fig. 8. FCP write exchange overview.

FCP Read Exchange—Tachyon as an Initiator. Fig. 9 shows the FCP read exchange host data structures for an initiator Tachyon.
For the initiator host to receive inbound SCSI data, it selects a valid OX_ID value that points to an unused location in the SCSI
exchange state table. The OX_ID value identifies this particular exchange. Using the OX_ID value, the initiator host builds a
data structure called an inbound SCSI exchange state table entry. The inbound SCSI exchange state table entry includes the
address of the SCSI descriptor block. The SCSI descriptor block defines the host buffers that Tachyon will use to store the
received read data.

IMQ Entry

IMQ Entry

IMQ Entry

SEST
Entry

SEST
Entry

SEST
Entry

IMQ SEST Buf_Addr

Buf_Addr

Buf_Addr

Buf_Addr

Buf_Addr

B_Offset

Byte_Cnt

Exp_Frm

F_CTL

SDB_Addr

Scratch

Exp_RO

Index Offset

SCSI Data

SDB Data Buffers
Inbound

SEST Entry

Host-Based Data Structures

= Inbound Message Queue
= SCSI Exchange State Table
= SCSI Descriptor Block

IMQ
SEST
SDB

OX_ID

SCSI Data

SCSI Data

SCSI Data

SCSI Data

Fig. 9. FCP read exchange initiator host data structures.

Article 12 October 1996 Hewlett-Packard Journal 12

In the command phase, once the host creates the inbound SCSI exchange state table entry, it creates an FCP_CMND for an FCP
read exchange. The initiator Tachyon sends the FCP_CMND to the target via the outbound command queue.

In the data phase, the initiator Tachyon may receive an FCP_XFER_RDY from the target. This is an optional step for an initiator
in an FCP read because the data frames contain all the information needed to process them. When Tachyon receives the
optional FCP_XFER_RDY from the target, it acknowledges the frame if appropriate and discards the FCP_XFER_RDY. As each data
frame is received, the SCSI exchange manager uses the OX_ID to access the appropriate inbound SCSI exchange state table
entry for the address of the SCSI data buffer. The SCSI descriptor block and the relative offset of the data frame determine
where data is to be placed in host memory. Tachyon maintains an internal cache of 16 inbound SCSI exchange state table
entries. If the SCSI exchange state table information associated with the received frame is not in cache, Tachyon writes the
least recently used cache entry back to the host SCSI exchange state table. Tachyon then fetches into cache the inbound
SCSI exchange state table entry associated with the received frame and transfers the read data to host memory via DMA.
The initiator Tachyon automatically handles both single and multiple data phases for inbound data transfers.

In the status phase, when the data phase is complete, the initiator Tachyon receives an FCP_RSP from the target. The FCP_RSP
is a Fibre Channel information unit that contains status information that indicates that the SCSI exchange has completed.
The initiator Tachyon passes the FCP_RSP to the host via the single-frame sequence channel and sends a completion message
to the initiator host. This informs the initiator host that the exchange is completed.

FCP Read Exchange—Tachyon as a Target. For FCP read exchanges for the target Tachyon, SCSI hardware assists are not used.
Fig. 10 shows the read exchange target host data structures.

OCQ Entry

OCQ Entry

OCQ Entry

Buffer Address

Buffer Length

Buffer Address

Buffer Length

EDB_Addr

EDB Data BuffersODB

= Inbound Message Queue
= Outbound Descriptor Block
= Extended Descriptor Block

OCQ
ODB
EDB

Buffer Address

Buffer Length

Buffer Address

Buffer Length

SCSI Data

Additional
A/L Pairs

ODB

SCSI Data

SCSI Data

SCSI Data

Fig. 10. FCP read exchange target host data structures.

In the command phase, the target Tachyon receives an FCP_CMND for an FCP read from the initiator and sends the FCP_CMND
to the target host via the single-frame sequence channel. If configured to automatically acknowledge, the target Tachyon
immediately returns an ACK (for class 1 and class 2) to the initiator. The target host selects a valid, unused RX_ID value. The
RX_ID is placed into the header of the ACK and sent via the high-priority command queue.

In the data phase, the target host builds an outbound descriptor block that contains the extended descriptor block address.
The target host builds an extended descriptor block that defines where the read data is located in the target host memory.
The target host may send an FCP_XFER_RDY to the initiator host to indicate that it is ready to send the requested data. The
target Tachyon sends the FCP_XFER_RDY(s) with the appropriate RX_ID value to the initiator Tachyon. Using the outbound
command queue, the target Tachyon then sends the appropriate SCSI read data to the initiator via the outbound command
queue.

In the status phase, the target Tachyon sends an FCP_RSP to the initiator to indicate that the exchange has completed.

FCP Write Exchange—Tachyon as an Initiator. Fig. 11 shows the FCP write exchange initiator host data structures. For the
initiator host to perform an outbound data transfer, it selects an unused SCSI exchange state table entry whose index will be
used as the OX_ID value. Using the OX_ID value, the initiator host builds an outbound SCSI exchange state table entry. The
outbound SCSI exchange state table entry includes information about the frame size, the Fibre Channel class, and writable
fields that the initiator Tachyon uses to manage the SCSI transfer. The outbound SCSI exchange state table entry also
contains a pointer to the extended descriptor block that contains pointers to the data to be sent.

In the command phase, once the host creates the outbound SCSI exchange state table entry, the host creates the FCP_CMND
for an FCP write exchange. The initiator Tachyon sends the FCP_CMND to the target via the outbound command queue.

In the data phase, when the initiator Tachyon receives the FCP_XFER_RDY from the target, it uses its SCSI hardware assists and
manages the data phase for this FCP_XFER_RDY independent of the host. Tachyon uses the information in the SCSI exchange
state table and the FCP_XFER_RDY to build an outbound descriptor block to be sent through the outbound state machine. If the
outbound sequence manager is busy, the SCSI exchange state machine adds the request to a linked list of outbound
transactions waiting for transmission. As the outbound sequence manager becomes available to process a SCSI transfer, the
SCSI exchange state manager dequeues a waiting transaction and passes it to the outbound sequence manager. The
outbound sequence manager transmits the write data to the target Tachyon.

Article 12 October 1996 Hewlett-Packard Journal 13

SEST Entry

SEST Entry

SEST Entry

Buffer Address

Buffer Length

Buffer Address

Buffer Length

EDB_Addr

EDB Data Buffers
Outbound

SEST Entry

= SCSI Exchange State Table
= Extended Descriptor Block

SEST
EDB

Buffer Address

Buffer Length

Buffer Address

Buffer Length

SCSI Data
SEST

OX_ID

Additional
A/L Pairs

SCSI Data

SCSI Data

SCSI Data

Fig. 11. FCP write exchange initiator host data structures.

If this FCP_XFER_RDY is part of a multiple-data-phase transfer, the initiator Tachyon passes this FCP_XFER_RDY as a single-frame
sequence to the initiator host along with a completion message. The initiator host is responsible for managing the data phase
for this multiple-data-phase transfer by using the general sequence moving services. The OX_ID field in the FCP_XFER_RDY is an
index into the SCSI exchange state table and identifies the appropriate outbound SCSI exchange state table entry that points
to the extended descriptor block in which the write data is located. Using the information in the outbound SCSI exchange
state table entry, the initiator host builds an outbound descriptor block. The initiator Tachyon uses the outbound descriptor
block to transmit the write data to the target.

In the status phase, after the data phase completes, the initiator Tachyon receives an FCP_RSP from the target. The initiator
Tachyon passes the FCP_RSP to the host and sends a completion message to the initiator host. This informs the initiator host
that the exchange has completed.

FCP Write Exchange—Tachyon as a Target. Fig. 12 shows the FCP write exchange target host data structures.

SEST Entry

SEST Entry

SEST Entry

Buffer Address

Buffer Address

Buffer Address

Buffer Address

SDB_Addr

SDB
OOO Reassembly Data Buffers

Inbound
SEST Entry

= SCSI Exchange State Table
= SCSI Descriptor Block
= Out-of-Order

SEST
EDB
OOO

Buffer Address

SEST

RX_ID

SCSI Data

SCSI Data

SCSI Data

SCSI Data

SCSI Data

Fig. 12. FCP write exchange target host data structures.

In the command phase, the target Tachyon receives an FCP_CMND for an FCP write from the initiator. If configured to do so,
the target Tachyon immediately returns an ACK to the initiator for class 1 and class 2. If Tachyon is not configured to return
an ACK, the target host is responsible for sending the ACK. The target host selects a valid RX_ID value, places the RX_ID into the
ACK header and sends the ACK via the high-priority command queue.

In the data phase, the target host selects an unused SCSI exchange state table entry whose index will be the RX_ID value.
Using the RX_ID value, the target host builds the inbound SCSI exchange state table entry that points to the SCSI descriptor
block. The SCSI descriptor block contains as many buffer addresses as necessary to receive the data. If the target host has
enough buffers and is ready to receive all of the data from the initiator, the host programs the inbound SCSI exchange state
table entry and the target Tachyon sends the FCP_XFER_RDY to the initiator via the outbound command queue. The initiator will
send the data when it is ready.

The target Tachyon checks the RX_ID of the data frame to locate the appropriate inbound SCSI exchange state table entry.
The inbound SCSI exchange state table entry helps Tachyon determine exactly where within the buffers the data is to be
placed. When the last data frame is received, the target Tachyon sends a completion message to the target host to inform the
target host that all frames for the SCSI sequence have been received.

In the status phase, the target host sends an FCP_RSP to the initiator via the outbound command queue.

Article 12 October 1996 Hewlett-Packard Journal 14

Tachyon System Interface
The Tachyon system interface describes the backplane protocol for the Tachyon chip. It is a flexible backplane interface that
allows customers to interface to Tachyon using many existing backplane protocols, including PCI, MCA, S-bus, EISA, VME,
and Hewlett-Packard’s High-Speed Connect (HSC) bus. The Tachyon system interface is capable of 100-Mbyte/s data
transfers. Fig. 13 shows the Tachyon system interface signals.

Backplane
Interface

Chip

Physical
Link

Module

Clock
Generator

Backplane
Interface

Physical
Link

Module
Interface

TAD [31..0]

PARITY

AVCS_L

TYPE [2..0]

READY_L

PREFETCH_L

RETRY_L

ERROR_L

INT_L

RESET_L

TBR_L [1..0]

TBG_L

SCLK

PAR_ID [1..0]

RX [19..0]

RBC

COM_DET

L_UNUSE

LCKREF_L

EWRAP

FAULT

TX [19..0]

TBC

TXCLK_SEL

LP2TDI

TDO

TCK

TRST

TMS

Scan Test
Interface

RC

Receive

Transmit

Tachyon

Receive
Clock

Test
Signals

Link

Fig. 13. Tachyon system interface.

The Tachyon system interface provides a basic transaction protocol that uses two major operations: write transactions and
read transactions. Every transaction has a master and a responder. If the host is the master of a transaction, Tachyon is the
responder in that transaction, and vice versa.

The master of a transaction drives an address and transaction type onto the TAD[] and TYPE[] buses, respectively, while
asserting AVCS_L to indicate the start of the transaction. If Tachyon masters a transaction, the host, as the responder, uses
READY_L as its acknowledgment signal. Similarly, if the host masters the transaction, Tachyon, as the responder, uses READY_L
as its acknowledgment signal. A Tachyon system interface bus master has the choice of using one-word, two-word,
four-word, or eight-word read and write transactions on the Tachyon system interface bus.

Tachyon System Interface Streaming
To maximize performance, the Tachyon system interface allows the host to configure the length of Tachyon’s bus tenancy.
When Tachyon obtains mastership of the Tachyon system interface and has more than one transaction to perform, Tachyon
may extend its bus tenancy and perform several Tachyon system interface transactions (up to the maximum programmed
limit) before releasing mastership. Table I shows how streaming increases performance over nonstreaming.

Table I
Tachyon Performance Savings with Streaming

 Tachyon Stream Size

1 Trans-
action (no
streaming)

4 Trans-
actions

16 Trans-
actions

64 Trans-
actions

Savings
on Writes

0% 14.2% 18.5% 19.6%

Savings
on Reads

0% 5.7% 7.2% 7.5%

Article 12 October 1996 Hewlett-Packard Journal 15

Tachyon Host Adapter Requirements
A generic Fibre Channel host bus adapter board using the Tachyon chip contains the following:

� Backplane Connector. Connects the backplane interface chip to the system bus.

� Backplane Interface Chip. Enables the connection of the Tachyon system interface bus to PCI, EISA, HP-HSC
or other bus.

� Tachyon Chip. HP’s Fibre Channel interface controller.

� Physical Link Module. Tachyon interfaces to many GLM-compliant physical link modules currently in the
marketplace. Types of modules include:

� 1063-Mbit/s DB9 copper connectors for distances up to 30 meters.
� 1063-Mbit/s shortwave laser physical link modules for distances up to 500 meters.
� 1063-Mbit/s longwave laser physical link modules for distances up to 10 kilometers.
� 266-Mbit/s shortwave laser physical link modules for distances up to 2 kilometers.

A block diagram of a typical host bus adapter is shown in Fig. 14. An HP-HSC Fibre Channel adapter is shown in Fig. 15. This
adapter was developed by HP to provide Fibre Channel connection to the HP 9000 K-Class servers3 for fast networking and
mass storage.

Backplane Connector

Backplane Interface Chip

Tachyon

Physical Link Module

Fig. 14. Block diagram of a typical host adapter board.

Development Tools
Effective tools were key to the success of the Tachyon chip.6 The following tools were used in the development project:

� Cadence Verilog-XL Turbo was used for interactive and batch Register Transfer Language (RTL) simulations,
gate functional simulations, and dynamic simulation.

� Chronologic Verilog Compiled Simulator (VCS) was used for batch RTL simulations.

� Quad Motive was used for static timing analysis.

� Synopsys was used for chip synthesis.

� Veritools Undertow was used as a waveform viewer.

� Inter-HDL Verilint was used to check syntax and semantics for RTL code.

� SIL Synth was used to manage and launch synthesis jobs.

� History Management System (HMS),5 written by Scott A. Kramer, was used as a revision control system.

� LSI Logic Corporation’s Concurrent Modular Design Environment (CMDE) was used for floorplanning bonding,
delay calculation, and layout.

� Hewlett Packard Task Broker6 was used to distribute jobs to the various compute engines.

Verification Environment
The verification environment used for Tachyon was very sophisticated and automated. The Tachyon chip model (as either a
Verilog RTL code or a gate-level netlist) was tested in simulation using Verilog’s programming language interface capability.
Test modules written in C or in Verilog provided stimulation to the Tachyon chip. Other test modules then verified the
functionality of the chip and reported errors.

Article 12 October 1996 Hewlett-Packard Journal 16

(a)

(b)

Fig. 15. (a) HP HSC Fibre Channel adapter, side A. (b)

HP HSC Fibre Channel adapter, side B.

Conclusion
The Tachyon Fibre Channel interface controller provides a high-performance, single-chip solution for mass storage,
clustering, and networking applications. Tachyon has been selected by many other companies as the cornerstone of their
Fibre Channel product designs. As an understanding of the capabilities of Fibre Channel technology grows in the
marketplace, Tachyon is expected to be present in a large number of new Fibre Channel products.

Acknowledgements
We wish to acknowledge the contributions of Randi Swisley, section manager for Tachyon and the HP HSC FC adapter
projects, Bob Whitson, Bryan Cowger, and Mike Peterson, technical marketing, Tachyon chip architects Bill Martin, Eric
Tausheck, and Mike Thompson, Fibre Channel standards committee members Kurt Chan and Steve Dean, project managers
Margie Evashenk and Tom Parker, VLSI design team lead Joe Steinmetz, hardware and VLSI design team members Catherine
Carbonaro, Dave Clark, Mun Johl, Ted Lopez, Bill Martin, George McDavid, Joseph Nuno, Pery Pearson, and Christi Wilde,
Tachyon simulation team members Narayan Ayalasomayajula, Tony de la Serna, Murthy Kompella, Brandon Mathew, Mark
Shillingberg, John Schimandle, Gordon Matheson, and Matt Wakeley, Tachyon and HSC FC adapter bringup team members
Navjyot Birak, Bob Groza, and Donna Jollay, and customer support specialist Rick Barber, who is happy to answer questions
from U.S. customers at 1-800-TACHYON. Special thanks to learning products engineer Mary Jo Domurat, who wrote the
Tachyon user’s manual, and disk support engineer Leland Wong, who provided photographs for this article.

References
1. A.R. Albrecht and P.A. Thaler, “Introduction to 100VG-AnyLAN and the IEEE 802.12 Local Area Network

Standard,” Hewlett-Packard Journal, Vol. 46, no. 4, August 1995, pp. 6-12.
2. J.S. Chang, et al, “A 1.0625-Gbit/s Fibre Channel Chipset with Laser Driver,” Hewlett-Packard Journal, Vol. 47,

no. 1, February 1996, pp. 60-67.
3. M.J. Harline, et al, “Symmetric Multiprocessing Workstations and Servers System-Designed for High Performance

and Low Cost,” Hewlett-Packard Journal, Vol. 47, no. 1, February 1996, pp. 8-17.
4. Gigabaud Link Module, FCSI-301, Rev. 1.0, Fiber Channel Association.

Article 12 October 1996 Hewlett-Packard Journal 17

5. S.A. Kramer, “History Management System,” Proceedings of the Third International Workshop on Software

Configuration Management (SCM3), June 1991, p. 140.
6. T.P. Graf, et al, “HP Task Broker: A Tool for Distributing Computational Tasks,” Hewlett-Packard Journal, Vol. 44,

no. 4, August 1993, pp. 15-22.

Bibliography
1. Tachyon User’s Manual, Draft 4, Hewlett-Packard Company.
2. Fibre Channel Arbitrated Loop Direct Disk Attach Profile (Private Loop), Version 2.0, ad hoc vendor group

proposal.

When we started to write this article, the possibility

existed that the HP Journal would be able to feature

the Tachyon chip on the cover. We came up with a

cover concept, and many people worked very hard on

the cover design. Unfortunately, it turned out that

Tachyon could not be featured on the cover. We would

like to thank the many people who contributed to this

graphic: Margie Evashenk for her concept drawing,

LSI Logic Corporation who contributed the

photomicrograph, Leland Wong who supplied

photographs of Tachyon, and graphic artist Marianne

deBlanc who put all the pieces together so beautifully.

http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/oct96/tc-10-96.htm

	bigcover_1096.jpg
	oct96a1.pdf
	oct96a1a.pdf
	oc9t6a2.pdf
	oct96a2.pdf
	oct96a3.pdf
	oct96a4.pdf
	oct96a4a.pdf
	oct96a4b.pdf
	oct96a4c.pdf
	oct96a4d.pdf
	oct96a4e.pdf
	oct96a4f.pdf
	oct96a5.pdf
	oct96a5a.pdf
	oct96a6.pdf
	oct96a7.pdf
	oct96a8.pdf
	oct96a9.pdf
	oct96a10.pdf
	oct96a11.pdf
	oct96a12.pdf
	AcrDC8.tmp
	Local Disk
	HP Journal - Table of Contents - October 1996 Volume 47 Issue 5

